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The Cooperative Research Centre for Living with Autism (Autism CRC) 

The Cooperative Research Centre for Living with Autism (Autism CRC) is the world’s first national, 
cooperative research effort focused on autism. Taking a whole-of-life approach to autism focusing 
on diagnosis, education and adult life, Autism CRC researchers are working with end-users to 
provide evidence-based outcomes which can be translated into practical solutions for 
governments, service providers, education and health professionals, families and people on the 
autism spectrum. 

A note on terminology 

We recognise that when referring to individuals on the autism spectrum, there is no one term that 
suits all people. In our published material and other work, when speaking of adults we use the 
terms 'autistic person', 'person on the autism spectrum' or ‘person on the spectrum’. The term 
'autistic person' uses identity first language, which reflects the belief that being autistic is a core 
part of a person's identity. 

Autism Spectrum Disorder (ASD) is diagnostic terminology used by the healthcare sector, and is 
used in the context of a person being ‘diagnosed with Autism Spectrum Disorder’.  
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1. Introduction 

1.1 Background and Rationale 

Autism is a highly heterogeneous condition, both clinically and genetically, which has complicated 

efforts to understand underlying causes and to identify diagnostic biomarkers. An important 

unresolved question in autism research is whether genomic information can assist in early and 

accurate diagnosis of autism. The objectives of this strategic project, commissioned in late 2015, 

were to receipt and process biospecimens for the Australian Autism Biobank (“Biobank”), derive 

and evaluate systems genomics-based predictors for autism using Biobank samples, and to 

integrate these with a clinical diagnostic instrument based on behavioural surveillance. 

The strategy we proposed was to combine a genetic predictor derived from genome-wide 

association study (GWAS) summary data with one or more non-genetic predictors derived from 

genome-wide data on DNA methylation, gut metagenomics and metabolomics. The rationale for 

this approach is that although heritability (i.e., defined as the proportion of variance between 

individuals in the population for propensity for a diagnosis explained by genetic factors) estimates 

for autism are high (i.e., ~60-80%) – indicating that inherited genetic factors make a large and 

important contribution to the likelihood of autism diagnosis – because autism is relatively rare in the 

population (~1%), even a perfect genetic predictor (which we do not yet have) can never be a 

reliable diagnostic predictor. For this reason, predictors that potentially capture information on 

autism-relevant environmental exposures, such as those derived from DNA methylation (a type of 

epigenetic mark on DNA that alters gene expression), the gut microbiome or metabolites, may 

enable more accurate prediction when combined with a genetic predictor.  

Genetic factors make an important contribution to variation in the likelihood that a person receives 

a diagnosis of autism spectrum disorder (ASD). This fact has driven interest in genetic studies of 

autism, because improved understanding of the genes involved may help to improve early and 

accurate diagnosis. Genetic factors associated with autism include rare and de novo (i.e., newly 

arising in the parental germ cells) variations that impact gene function, as well as genetic variations 

that are common in the broader population and that predominantly influence when and the extent 

to which autism-related genes are turned off and on. Rare autism-associated genetic variants can 

have a large impact on the probability of having autism in those that carry them, whereas common 

variations have very small effects individually. However, recent studies suggest that cumulatively, 

these common genetic factors are more important in autism than rare and de novo gene-altering 

mutations, which have formerly received most attention in autism research. 
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One of the most successful experimental designs for identifying common genetic variations 

associated with complex conditions (that is, those with genetic and environmental contributions) 

such as autism is the genome-wide association study (GWAS). This study design uses cost-

effective and reliable microarray technology to characterise the genome, in a large number of 

people with and without a condition, at hundreds of thousands of different genetic markers 

(referred to as single nucleotide polymorphisms or “SNPs”) that are known to vary between people 

in the population. The frequency of each variation in groups on the spectrum and not on the 

spectrum is then compared using a statistical test, and those variations with differences that are 

highly unlikely to have been observed by chance are reported to be associated. When we perform 

a GWAS of autism, genetic variations that are identified are markers telling us that nearby genes 

are involved in the development of autism symptoms. Very large GWAS for autism have been 

performed by the international Psychiatric Genomics Consortium (PGC) – e.g., the latest study 

included 18,381 autistic individuals and 27,969 individuals without autism, with still larger studies 

planned for the future. Using the results from PGC GWAS for autism it is possible to generate 

polygenic scores (PGS) that summarise the estimated effect of common autism-associated genetic 

markers. Given sufficiently large PGC GWAS for autism, PGS’s may help to stratify individuals in 

the Australian Autism Biobank (AAB) into those with low likelihood of a diagnosis versus a higher 

likelihood. Analysis of data from SNP arrays can also identify large copy number variations 

(CNVs), some of which have been previously associated with autism. 

The emphasis on genetic research in autism means that autism-related environmental factors are 

less well understood. Environmental exposures are typically investigated using epidemiological 

approaches, with varying levels of evidence from these studies for a contribution of advanced 

parental age, premature birth, very low birth weight, birth complications and maternal hypertension 

to autism diagnosis. An alternative approach to investigating environmental factors in autism is to 

characterise patterns of DNA methylation (a type of epigenetic modification) in the genome, which 

can be influenced by both genetics and environmental factors. DNA methylation in gene promoter 

and repressor regions influences the extent to which genes are turned on and off. For this reason, 

studying variation in DNA methylation is one potential approach to assessing the contribution of 

environmental factors to an autism diagnosis. Methods using array-based technology now enable 

cost-effective screening of hundreds of thousands of DNA methylation sites in the genome. The 

application of these methods to perform methylome-wide association studies (MWAS) in autism is 

in its infancy, but larger studies are expected to be published in the coming years. These studies 

have the potential to identify individual genes with differential methylation in autism, potentially due 

to diagnosis-related environmental exposures. It may also be possible, using an approach similar 
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to polygenic scoring (see above), to calculate polymethylation scores (PMS) in the AAB, which 

may capture environmental exposures relevant to autism.  

A specific environmental factor engendering substantial interest in the autism community is the gut 

microbiome, which refers to the highly diverse community of bacteria and other microorganisms 

that inhabit the gastrointestinal tract. There is substantial evidence supporting an important role of 

this community in many aspects of human health, including development and maintenance of the 

immune system and potentially also brain-related phenotypes. Interest in the gut microbiome in 

autism stems primarily from three sources: first, epidemiological studies showing that rates of 

gastrointestinal conditions are high in autism; second, direct reports of autism-associated bacterial 

taxa from sequence-based analyses of stool-derived DNA; and third, studies in animal models, 

including faecal microbiota transplantation experiments in germ-free mice, suggesting that the 

microbiota are causally related to autism traits. These observations have led to a proliferation of 

microbiome-based interventions for autism, including the progression of clinical trials (albeit open 

label and non-blinded) for faecal microbiota transplantation in autism. However, despite the 

undeniable excitement, it is important to note that the evidence supporting an association of the 

microbiome with autism, and indeed for a causal effect of the microbiome on autism traits, remains 

weak. This is because published studies are small and many do not adequately account for known 

confounders of microbiome variation, including age, sex, diet and medications. Further studies in 

deeply phenotyped cohorts, such as the AAB, will be needed to more-definitively establish the 

relationship between the gut microbiome and autism. 

Another area of active research in autism is metabolomics, which refers to the study of small 

molecules that are the by-products of our metabolism (“metabolites”), using liquid chromatography-

mass spectrometry (LS-MS) and related methods. Metabolites such as proteins and lipids are 

intermediate markers that bridge the gap between genetic factors and the observable clinical traits 

of autism. These are likely to be important to study as they reflect dynamic processes, provide 

high-level resolution into biological mechanisms such as mitochondrial dysfunction, oxidative 

stress and inflammatory processes, and may help to identify biological sub-types of autism, for 

whom prognosis and treatments could be better tailored. Information from metabolomics and 

lipidomics screens in the AAB is expected to enhance our understanding of the underlying causes 

of Autism Spectrum Disorder and will hopefully contribute to Autism biomarker discovery and the 

development of genomic predictors. 

A strength of our proposal is that the generation of SNP, DNA methylation, gut microbiome and 

lipidomics data will enable Autism CRC to utilise international developments in autism genetics and 

genomics in the coming 3-5 years, including for example, results from large-scale GWAS, and the 
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potential identification of DNA methylation, microbiome and lipidomics signatures for autism and/or 

autism-relevant environmental exposures. Another strength is the collection of diverse biological 

samples, including faeces and urine, which together with detailed clinical and lifestyle data, will 

contribute to a rich and multi-layered biological resource that will be the foundation for future 

research and discovery. A further strength is the collection of biospecimens and data in both 

children on the spectrum and siblings and unrelated children without a diagnosis, since this 

enables the derivation and validation of predictors that have clinical sensitivity and specificity, and 

so guards against generation of a diagnostic test that produces a high proportion of false positives. 

An important qualification of this proposal is that the data and resources available to us in the 

Australian Autism Biobank study are insufficient to generate a diagnostic predictor for autism. This 

project represents only the first step towards that ultimate goal. 

1.2 Specific Aims 

Aim 1: Receipt and process biological samples (blood, faeces, urine, hair) from up to 1,200 

autistic children, their parents and non-autistic siblings and age-matched controls as part of the 

Australian Autism Biobank (“Biobank”). 

Aim 2: Generate and analyse genome-wide single nucleotide polymorphism (SNP) data in all 

Biobank participants. 

Aim 3: Generate and analyse additional genomics datasets, including DNA methylation, 

metabolomics and gut microbiome, in sub-sets of autistic children and age-matched non-autistic 

siblings and controls in the Biobank. 

Aim 4: Develop and validate systems genomics-based predictors for autism and integrate these 

with clinical diagnostic instruments to improve early and accurate diagnosis. 
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2. Study design and Methods 

2.1 Ethics 

All families provided informed consented to be included in the study: 

• NSW (N=264 child participants, 235 parents): Sydney Children’s Hospital Network HREC, 

approval number HREC/14/SCHN/269.  

• QLD (N=303 child participants, 239 parents): Mater Research HREC, approval number 

HREC/14/MHS/212; the University of Queensland, approval number 2014001079 

• VIC (N=365 child participants, 329 parents): La Trobe University, approval number 

HEC16/104 

• WA (N= 648 child participants, 662 parents): Princess Margaret Hospital for Children 

approval number 2014029EP; the University of Western Australia approval number 

RA/4/1/8184 

 

2.2 Biospecimen receipt and processing 

Procedures for receipt and processing of biospecimens, including blood (EDTA and SST tubes), 

saliva, stool, urine and hair have been fully described in Alvares et al. (2018)1.  

Briefly, blood collection included an EDTA tube for DNA (highest priority), SST tube for serum, and 

in some cases a PaxGene tube for RNA (Table 2.2.1). Where a blood collection was unsuccessful 

(for example due to child distress), a saliva collection (2 ml through spit or swab) was attempted. 

Samples (collected by paediatric phlebotomists or through hospital/pathology phlebotomy services) 

were transported at room temperature to the University of Queensland’s Human Studies Unit 

(HSU) and immediately processed (time from collection to processing between 12 and 72 h): 

EDTA and SST tubes were centrifuged at 3000 rpm for 15 min to separate the individual 

components of plasma, red blood cells, buffy coat (EDTA) and serum (SST), with fractions stored 

in 2 mL screw cap tubes for long-term storage at −80 degrees Celsius (Table 2.2.2).  

Stool samples (at-home collection of duplicate teaspoon-sized samples per child participant) 

suspended in 4mLs RNAlaterTM were transported to the HUS and immediately processed by 

vigorous homogenisation prior to aliquoting into a total of 6 × 1mL samples for long-term storage at 
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−80ºC.  Urine samples (~20mL per child participant) were cold shipped in batches from the clinical 

sites to the HSU for labelling and storage at –80ºC. Subsequently, each tube was thawed (once 

only), thoroughly mixed and aliquoted into 8x 1mL aliquots. Hair samples (approximately 10 

strands per child participant) in aluminium foil were transported at room temperature to the HSU for 

labelling, and then transferred to long-term storage.  

Table 2.2.1 Biospecimens collected per participant group. 

Sample type ASD probands Parents Siblings/Controls 

Blood    

EDTA 6mL 9mL 6mL 

SST 5mL 5mL 5mL 

PaxGene 2.5mL 2.5mL 2.5mL 

Stool 2x teaspoon – 2x teaspoon 

Urine ~20mL – ~20mL 

Hair ~10 strands – ~10 strands 

Table 2.2.2: Sample fractions generated per participant. 

Sample fraction Volume (mL) Aliquots 

Whole Blood 0.1 1 

Plasma 1 2 

Red Blood Cells 1 1 

Serum 0.5 2 

Stool 1 6 

Urine 1.1 8 

Hair 1 (unit) 1 

DNA Stock 0.10 - 0.40 1 

DNA Variable ~0.200 1 
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2.3 Genetics 

2.3.1 SNP genotyping quality control (QC) and imputation 

SNP genotyping was initially performed on a total of 2,491 Biobank participants (756 mothers, 505 

fathers, 887 autistic children (“ASD”), 219 non-autistic siblings (“SIB”), 117 unrelated non-autistic 

controls (“UNR”)) who provided a blood sample, using the Illumina Global Screening Array v1 and 

v2. We applied standard QC steps to filter low quality samples and less-reliable SNPs. After 

imputation to the Haplotype Reference Consortium2 dataset (using the Sanger Imputation Service, 

with pre-phasing performed using EAGLE2 software 3) and further QC, there were 2,478 

participants and 7,068,672 SNPs (6,991,521 autosomal markers and 77,151 on chromosome X; 

minor allele frequency <0.01) for prediction analyses. One further child participant in the UNR 

group was excluded on the basis of called CNVs (see below), after which data from 2,477 

participants remained in the QC-ed dataset. For full details of SNP QC and imputation see Yap et 

al. (2021)4. 

2.3.2 Ancestry assignment and genetic relationships 

We inferred genetic ancestry for each individual (European, South Asian, East Asian, African, and 

“other”) by cross-referencing the Biobank genotyping data to the 1000 Genomes reference dataset 

(i.e. using the first two principal components (PCs) of the genetic reference data, which capture 

major genetic differences between ancestries). For the European subset (n=1,973) of the Biobank, 

we calculated 20 PCs (representing genetic sub-populations among Europeans) using GCTAv1.92 
5,6 (based on n=255,861 common genotyped SNPs), which were subsequently included as 

covariates in the polygenic scoring (PGS) analyses (see below). 

Familial relationships were inferred using pairwise identity-by-state estimation (with the PLINK1.9 –

genome command, using a set of 92,546 independent genetic markers), and also by constructed a 

genetic relatedness matrix (GRM) from the SNP genotypes using GCTAv1.92 5,6. These 

relationships were cross-referenced against the reported relationships in the Biobank, and to 

match family members not otherwise linked by the ID system (e.g., where individuals within one 

family were recruited on different dates or via different assessment centres). 

2.3.3 Association testing 

We did not test for association between individual SNPs and autism (or any other measured trait) 

in the Biobank, because the sample is underpowered. To place the Biobank (total n=2477 after 

QC) in the context of contemporary genetic studies of autism, the most recent genome-wide 
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association study (GWAS) meta-analysis published by the Psychiatric Genomics Consortium 

(PGC) comprised 18,381 individuals with a diagnosis of autism and 27,969 controls7. That study 

identified 5 genome-wide significant SNPs and provided evidence – consistent with that for all 

other common psychiatric conditions8 – that a substantial proportion of the heritability is explained 

by common SNPs. For this reason, larger GWAS meta-analyses are expected to yield many more 

genetic discoveries for autism. 

2.3.4 Polygenic scoring (PGS) 

We calculated Polygenic scores (PGS) for Autism Spectrum Disorder, IQ, chronotype and height 

(as a benchmarking trait) in all Biobank participants. PGS require two components: 1) estimates of 

the strength of association (i.e. weights) between SNPs used to generate the score and the trait of 

interest (e.g. autism diagnosis), obtained from analysis of an cohort independent of the target 

sample, and 2) individual-level genotype data (generated and QC-ed as discussed above) in the 

target sample. 

To generate SNP weights, we used the state-of-the-art SBayesR 9,10 software (using default 

settings), taking as input a) GWAS summary statistics for Autism 11, IQ 12, chronotype 13 and height 
9, and b) a genetic reference matrix that is used to adjust for correlations between SNPs that may 

affect the PGS score. For height only, there was an additional step to filter GWAS SNPs with the 

software package DENTIST 14, to improve convergence of the SBayesR algorithm. 

To generate PGS for each trait, we multiplied the number of alleles carried by each Biobank 

individual by the SBayesR weights, using the PLINK --score function. We restricted analyses of the 

target dataset to the subset of participants of inferred European ancestry, to match the ancestry 

profile of the input GWAS summary statistics. The PGS scores were standardised by subtracting 

the mean and dividing by the standard deviation of the UKB controls (see below).  

Selection of UK Biobank (UKB) controls: Given that the UNR group had minimal exclusion 

criteria and was small (n=117), we also included UK Biobank (UKB) controls with European 

genetic ancestry as an additional control group. These individuals were selected by taking the n=5 

“most genetically similar” individuals from the UKB, for each of the autistic Biobank participants of 

European ancestry. We note that international efforts are underway to address the current under-

representation of non-European ancestries in human genetic studies, including in autism, and thus 

we anticipate that in future, analyses such as those described here could encompass all major 

ancestries. To confirm that the UKB control sample was well matched genetically to the Biobank, 

we analysed PGS for height as a control trait. Height is considered a model genetic trait because it 

has high heritability and summary statistics from very large GWAS are available9. As expected, 
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there was no evidence for over-transmission of common genetic variation for height in the Biobank 

ASD group compared to SIB’s, or for differences in height PGS between any Biobank group and 

the UKB controls. Thus, the UKB control group was well matched to the Biobank.  

Between-group PGS differences: We tested for a mean difference in PGS for each trait between 

ASD, SIB and UNR Biobank groups using Z-tests. 

Over-transmission of common genetic variation for autism: We tested for over-transmission of 

common genetic variation for autism from parents to their children with and without autism, using 

pTDT software 15, including n=330 individuals diagnosed with autism and n=145 undiagnosed 

siblings with parental genotyping data. Briefly, this tests for a difference in the child’s PGS from the 

average of their parents’ PGS (which represents the null). We also looked for evidence of 

assortative mating for autism only (that is, parents choosing their partner based on similar traits). 

For this, we tested for correlation of PGS between the parental pairs within the family data. 

Relationships between PGS and phenotypes: We calculated correlations between PGS of 

multiple traits and various phenotypes of interest recorded within individuals of European ancestry 

in the AAB. We removed (via linear regression) the effect of age, sex and ancestry from the 

phenotypes, before calculating how much of the phenotypic variance is explained by PGS. 

Multiple testing correction: We used the Bonferroni method to avoid false positives and correct 

for multiple testing across all PGS analyses (50 tests, p≤0.05/50 or p≤1e-3). Phenotype-PGS 

associations that were tested for both variance and correlation were counted as one test, as these 

statistics are mathematically related. 

2.3.5 Copy number variant (CNV) calling 

We followed the Psychiatric Genomics Consortium CNV analysis pipeline 16, with a few 

modifications. CNVs were identified in each Biobank individual using consensus calling from the 

PennCNV 17 and iPattern 18 software. Specifically, we merged CNVs output by each software that 

were likely relating to the same event, then obtained consensus CNV calls for each individual by 

intersecting CNV calls from both methods and retaining those with ≥50% overlap, ensuring that 

copy number (gain or loss) was matching in each method. A total of 10,752 consensus CNVs were 

identified using this approach. 

Sample QC was performed using summary statistics from the PennCNV output. We removed 

n=137 samples that did not pass standard QC filters. We also applied a filter for samples where 

CNVs made up greater than 20% of any chromosome to exclude aneuploidy (ie., differences in 
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chromosome count). This step identified n=2 individuals – one participant from the autistic group 

with known Down syndrome (trisomy 21), and one participant with diagnosed Smith-Magenis 

syndrome whom had been included in the UNR group. We also set filters to retain only high-

confidence, large (>20Kb), and rare (<1%) CNVs. After these QC steps, we excluded one 

additional individual for whom 21 CNVs had been called (the next-highest number of CNVs for an 

individual was four), leaving 885 CNVs from 723 individuals remaining for subsequent analysis. 

CNV annotation: We annotated CNVs for cytobands (if ≥50% of the called CNV length lay within 

that cytoband) and genes (if the CNV overlapped with any coding exons within the gene) using the 

hg19 biomaRt download 19. We checked for overlap between CNVs in the Biobank dataset and a 

total of 51 CNV regions selected from clinical databases (ClinGen 20 and DECIPHER 21,22) on the 

basis of evidence for association with autism and ID. We divided these known ASD/ID CNVs into 

those with and without a critical gene. CNVs with a critical gene required overlap with any exon, 

whereas CNVs without a critical gene required ≥80% of the pathogenic CNV region. We also 

looked for overlap of the Biobank CNVs with the 102 genes identified by the largest whole exome 

sequencing study of autism to date 23, and 93 genes associated with developmental disorders from 

the Deciphering Development Disorders (DDD) study 24 – a total of 158 unique genes.  

2.4 Gut microbiome  

2.4.1 Metagenomics data 

Microba Life Sciences was contracted to generate gut metagenomics sequence data from 249 

stool samples, including n=199 from the Australian Autism Biobank 99 autistic (ASD), 51 non-

autistic siblings (SIB), 49 unrelated non-autistic controls (UNR)) and n=49 from the Queensland 

Twin Adolescent Brain (QTAB, all UNR) study (Figure 2.4.1.1). Microba also performed annotation 

of bacterial species and metabolic pathway potential and undertook initial QC on the dataset25. 

Stool-derived DNA samples were sequenced to a target depth of 3Gb using 2x150bp Illumina 

chemistry. 
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Figure 2.4.1.1 Schematic of the Australian Autism Biobank gut metagenomics pilot study.  

2.4.2 Dietary data 

Dietary data was collected in both the Biobank and QTAB cohorts – predominantly on the basis of 

parent-report – using the Australian Eating Survey (AES; toddler and children’s versions) 26,27, 

which has been validated in the Australian population. Food-level intake data was available for 

n=245 of the 247 participants, and percent energy (pe) data was available for 246. The AES 

records frequencies of intake for 123 different foods, from which derived variables are generated, 

including percentage energy (pe) from each of 13 core (vegetables, fruit, meat, alternative proteins, 

grains, dairy) and non-core (sweet drinks, packed snacks, confectionery, baked products, takeaway, 

condiments, fatty meats) food groups; macronutrients (various carbohydrates, fats and proteins); 

micronutrients (various vitamins and minerals), and the Australian Recommended Food Score. 

We used the dietary data in two ways. First, we used the food-level input to measure dietary 

diversity (n=245) using Shannon index – the same measure of alpha-diversity used in the 

microbiome analyses (see below). Second, we calculated principal components from the percent 

energy data (n=246; hereafter referred to as pe _PCs), to capture salient dietary features that may 

affect the microbiome, given that a strong relationship has been identified by others 28,29. On the 

basis of their loadings onto the dietary items, the first 3 pe_PCs were interpreted as follows: 

• PC1: diet high in plant-based diet (vegetables, fruit) / low in non-meat non-core foods 

(sweet drinks, packed snacks, confectionery, baked products, takeaway, fatty meats) 

• PC2: high dairy diet / low in grains and takeaway 

• PC3: high in meat (including fatty meats) / low in grains and dairy 



 

 17 

2.4.3 Variance components analysis 

Omics-relationship matrix (ORM) construction and OREML analysis 

We performed variance component analysis using the software package OSCA 30. This is useful in 

estimating the upper bound of how well the microbiome (or diet) dataset is able to predict a trait. 

Covariate choice depended on the focal phenotype, but universally included sex and age (except 

when age was the dependent phenotype), and in some cases, participant group or dietary pe_PCs. 

We treated common bacteria versus rare bacteria separately in this analysis, and we also 

generated ORMs on the basis of common and rare bacterial genes. This was motivated by the 

observation that there are some “core” taxa as well as “accessory” taxa which may have differing 

properties and roles. 

2.4.4 Diversity analysis 

We calculated two estimates of microbiome diversity in the Biobank dataset: alpha diversity and 

beta diversity. Alpha-diversity measures how diverse the microbiome community is within each 

sample. Richness is one alpha-diversity measure and quantifies how many different species were 

identified per individual. An extension to this is the Shannon Index, which accounts for both 

richness and evenness, which we calculated among bacterial species within our dataset. In 

contrast, beta-diversity refers to diversity between samples; that is, how different each individual is 

from other individuals. To calculate beta-diversity, we generated a weighted Unifrac index matrix, 

calculated using 1,054 bacterial species (i.e., not including archaea). We used this beta-diversity 

matrix to quantify differences in microbiome profiles between ASD, SIB and UNR groups. 

2.4.5 Differential abundance analysis 

Species-level taxonomic data: We tested whether any of n=607 common bacterial species were 

significantly more or less prevalent in the ASD group versus other groups. For this, we used 

ANCOMv2.1 31 (implemented in R: https://github.com/FrederickHuangLin/ANCOM) as it is robust to 

statistical assumptions32. 

Gene-level functional data: We then took differentially abundant bacteria and tested whether any 

of the genes that they encoded were differentially abundant. In this analysis, we tested 4,950 

genes from a single differentially abundant species. 

 

 

https://github.com/FrederickHuangLin/ANCOM
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2.4.6 Linear models 

We generated linear models to test for associations between diversity measures and potentially-

contributing phenotypic (Bristol Stool Score, ADOS-2/G repetitive and restricted behaviour (RRB) 

score, Social Responsiveness Scale t-score (SRS), Short Sensory Profile raw sensor score (SSP)) 

and biological measures (polygenic scores (PGS) for Autism Spectrum Disorder 11, ADHD-ASD-TS 

cross-trait 33 and neuroticism 34, and CD4+ T-cell proportions). To account for multiple testing, we 

performed Benjamini-Hochberg false discovery rate (FDR) correction. 

 

2.5 DNA methylation 

2.5.1 DNA methylation data and quality control 

This study used whole blood samples from n=468 children and adolescents recruited into the 

Australian Autism Biobank35 and Queensland Twin Adolescent Brain project. Participants were 

assigned to three groups: ASD, SIB and UNR (Figure 2.5.1.1). We used the Illumina EPIC Human 

Methylation array, which assays over 850,000 CpG methylation probes across the genome. We 

used the meffil36 software package for normalisation. We also performed standard QC filters to 

identify reliable probes and target those that were more likely to have an effect and used this 

reduced subset for downstream analyses. 

 

Figure 2.5.1.1 Schematic of the DNA methylation study design. 
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2.5.2 Cell-type proportions 

The DNA methylation (DNAm) data is generated from whole blood which essentially is a mixture of 

several different white blood cell types. Each cell type has a specific DNA methylation profile at 

specific locations in the genome. It is important to know if any differences detected between test 

groups is driven by differences in these mixtures (proportions) of different cell-types or not.  Using 

the cleaned DNA methylation data, we deconvolved blood cell-type proportions (CTPs; neutrophils, 

CD4+ T-cells, CD8+ T-cells, B-cells, NK cells, monocytes, eosinophils) in each individual, using a 

human immune cell reference dataset (GSE35069). We looked for association of CTPs with 

participant group and included CTPs as covariates in association analyses. 

2.5.3 Variance components analysis 

We estimated the proportion of variance in autism diagnosis that was associated with all DNA 

methylation probes combined, using the Omics-data-based restricted maximum likelihood 

(OREML) method implemented in the OSCA 30 software. We additionally performed analyses of 

autism polygenic score, Short Sensory Profile (SSP_sensory) raw sensory score, Children’s Sleep 

Habits Questionnaire (CSHQ) raw score, a composite score for IQ (composite scores from the NIH 

Toolbox age-adjusted questionnaire) and DQ (Mullen’s Scales of Early Learning non-verbal 

composite score), hereafter referred to as “IQ-DQ”, and age, and we adjusted for covariates, 

including sex, genotype PCs, cell-type proportions and age (with the exception of analyses in 

which the response variable was age). The purpose of these variance component analyses was to 

quantify the upper limit of the ability of DNA methylation data to predict autism diagnostic status.  

2.5.4 Methylome-wide association study (MWAS) and meta-analysis 

We used a mixed-linear model approach called MOA (MLM-based omic association) implemented 

in the package OSCA30 to generate MWAS summary statistics. We chose MOA as it has been 

shown to increase power to detect associations while adequately controlling for false positives30. 

We did not include covariates in this analysis, as the variance-covariance matrix used in MOA 

automatically detects these within a random-effects framework. We used the METAL37 software to 

perform an MWAS meta-analysis of AAB-QTAB and the MINERvA38 study from Denmark, 

analysing only those methylation probes shared across all three studies. 
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2.6 Lipidomics 

2.6.1 Data and quality control 

We engaged with The Baker Institute in Melbourne to generate lipidomics data in non-fasting blood 

plasma samples from n=765 children and adolescents recruited into the Australian Autism Biobank 

(AAB)35 and Queensland Twin Adolescent Brain (QTAB) study. The sample included 485 

participants with a diagnosis of autism, 160 undiagnosed siblings (SIB), and 120 unrelated 

undiagnosed (UNR) children, 96 from the AAB and 24 from QTAB. Participant groups were well 

matched for age, whereas there was a male bias for the ASD group, as is expected given the 

known sex bias for autism (Figure 2.6.1.1). 

The Metabolomics Profiling Facility at The Baker Institute generated semi-quantitative data on a 

total of 825 lipid species in 41 lipid classes (Appendix A), using an Agilent liquid chromatography–

mass spectrometry (LC/MS) platform comprising a 1290 series HPLC combined with a 6495C 

triple quadrapole mass spectrometer. Raw mass spectrometry data was processed using the 

MassHunter Quant (B08) software from Agilent. Concentrations for each lipid species were 

obtained from the ratio of the peak area to the corresponding internal standard, and values for lipid 

classes were calculated by summing the concentrations of the individual species within each class.  

Established and validated in-house pipelines were used for quality control and filtering of lipid 

species. First, technical variation between batches was removed by performing a median centring 

procedure using the pooled plasma quality control (PQC) samples included in the extractions. For 

each lipid, the median concentration for all PQCs in each batch was calculated. The lipid 

concentrations in each batch are then multiplied by the ratio of the overall PQC median across all 

batches (i.e., the median of all PQC medians) over the batchwise PQC median. Second, missing 
values (i.e., lipids below the detection threshold) were imputed to half the minimum observed 

concentration. Third, sample outliers were then detected on the basis of a Z-score >3 standard 

deviations from the mean, or distance from the origin in a principal component analysis was in the 

99th percentile of the distribution. On the basis of these criteria, seven outlier samples were 

identified and removed. We also excluded TG [NL] from classes and TG [SIM] from species, in 

addition to a further n=10 lipid species for which >10% of the variance in lipid concentration was 

explained by batch and injection order, and we confirmed that these excluded lipids had negligible 

association with autism diagnosis in a model of lipid concentration ~ autism diagnosis (all 

explaining <=1% of variance). The final dataset comprised n=781 lipid species in 39 classes in a 

total of n=758 individuals (479 ASD, 160 SIB, 119 UNR) 
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Figure 2.6.1.1 Breakdown of participant groups by sex (left: red=male, blue=female) and age (right). 

2.6.2 Variance components analysis 

We estimated the proportion of variance in our sample attributable to Autism Spectrum Disorder 

diagnosis and each of six other traits (age, Tanner stage, ID_DQ, sleep problems, gross motor 

skills, Bristol Stool Chart) that was associated with all lipid species combined, using the Omics-

data-based restricted maximum likelihood (OREML) method implemented in the OSCA software. 

We also performed OREML analyses for each of five dietary phenotypes, including total 

cholesterol, protein, fats, sugars and carbohydrates. We applied an inverse normal transformation 

to the lipid species data prior to building the Omics-data-based Relationship Matrix (ORM), and we 

performed analyses with and without covariates, which included age (except where the trait was 

age or Tanner stage), sex, batch and storage time. We additionally adjusted for time of day as a 

sensitivity analysis, in the subset of individuals for which this data was available, and for dietary 

variables (except where the trait was a dietary phenotype), in the subset of n=260 participants for 

whom the Australian Eating Survey was available. For dietary phenotypes, we adjusted for 

demographic and batch covariates (as described above), in addition to energy intake. 
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2.6.3 Lipidome wide association analysis (LWAS) 

We tested for association between individual lipids and Austim Spectrum Disorder diagnosis, 

ID_DQ, sleep problems (CSHQ), age and Tanner developmental stage. We used linear or logistic 

regression, with and without covariates, which included sex, batch, injection order and storage time 

for all analyses, and additionally age in all but the age and Tanner stage analyses. We applied 

backwards stepwise regression (using the R package MASS, which optimises the model based on 

the AIC) to the lipids passing Bonferroni correction (threshold calculated by dividing p=0.05 by the 

number of lipids included within each association analysis) to account for correlation between lipid 

species and classes. We applied an inverse-normal transformation to the lipidomics data and 

excluded the n=7 outliers. Sensitivity analyses for the effect of storage time outliers (n=64) showed 

minimal difference for all traits other than Autism Spectrum Disorder diagnosis, so we retained all 

n=758 participants for analyses of traits other than Autism, for which the sample size was n=694. 

 

2.7 Systems genomics-based prediction 

2.7.1 Rationale  

An important question in autism research is whether genomic information can assist in early and 

accurate diagnosis of autism. Here, we present a preliminary assessment of systems genomics 

predictors of autism in the AAB. The rationale of the study design – which was to combine genetic 

and genomic predictors – is that the latter may capture variation due to autism-related 

environmental exposures, and so may improve the accuracy of a genetic predictor, which can 

never be a perfect predictor, because the genetic contribution (i.e., heritability) of autism, although 

high, is less than 1. Genome-wide data on single nucleotide polymorphisms (SNPs), blood-derived 

DNA methylation, gut metagenomics and lipidomics in the AAB – generated by Project 1.042RC – 

were available for this analysis. 

Genomic prediction typically involves the estimation of effect sizes for predictors in discovery 

datasets that are independent of the target sample in which the predictor is applied and evaluated. 

This is important to avoid the so-called “winners’ curse”, whereby the effect sizes of the most 

strongly associated genomic variables within a cohort-specific analysis are inflated, and because 

confounding of batch effects with diagnosis within a single cohort can bias results. Alternatively, if 

independent datasets are not available, K-folds cross validation can be used within a single cohort, 

whereby subsets of the data (typically ~20%) are held-out for evaluation of predictors estimated in 

the remainder of the data, averaging across K (e.g., 5) data partitions. It is important to note that 
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this approach may not circumvent the issues noted above, and it is only possible if the dataset is 

sufficiently large to enable partitioning of the data into multiple discovery and target samples. 

In our analyses of the AAB data, the former strategy was possible for predictors based on genome-

wide SNP and DNA methylation data, for which independent, publicly available datasets exist (see 

below). On the other hand, no independent gut metagenomics or lipidomics data for autism is 

available, and the AAB datasets are insufficient in size for K-folds cross validation (see below). For 

this reason, this preliminary report on genomic prediction in the AAB is based on genetic (i.e., 

SNP) and DNA methylation-based predictors.  

We were unable to evaluate an integrated diagnostic protocol combining systems genomics 

predictors with variables from behavioural assessments, because no assessments were available 

in all of the study groups: children diagnosed with autism, siblings, and unrelated children without a 

diagnosis. 

2.7.2 Data quality control 

Genotyping data: We used association test summary statistics from the largest published 

genome-wide association study (GWAS) for Autism Spectrum Disorder from the Psychiatric 

Genomics Consortium7, which reported five independent (p<5e-8, r2<0.1) genome-wide significant 

associations from analysis of n=46,350 participants (18,381 diagnosed, 27,969 undiagnosed). 

We generated polygenic score (PGS) weights using SBayesR – a Bayesian method that takes 

GWAS summary statistics as input39. This method shrinks SNP effect sizes while still maximising 

variance explained by “binning” SNPs into a mixture of normally distributed priors, accounting for 

linkage disequilibrium (i.e., correlations between SNPs) and adapting to the genetic architecture 

specific to the trait. SBayesR has been shown to outperform other PGS methods regardless of the 

underlying genetic architecture of the trait10,39. SBayesR requires two inputs: 1) GWAS summary 

statistics from which HapMap3 SNPs with imputation INFO filter>0.8 were extracted, retaining only 

those SNPs that passed QC in both AAB and the UK Biobank (UKB), and 2) linkage disequilibrium 

matrices built using HapMap3 SNPs from a subset of 50,000 unrelated Europeans from the UKB. 

SBayesR was run with the default inputs: --pi 0.95, 0.02, 0.02, 0.01; gamma 0, 0.01, 0.1, 1; chain-

length 10000; burn-in 2000; out-freq 10. We excluded the MHC region on chromosome 6, due to 

the complex patterns of linkage disequilibrium in this region, using the –exclude-mhc flag.  

To generate PGS for Autism Spectrum Disorder, we multiplied the best guess genotypes in the 

target sample (i.e. AAB individuals and UKB controls) by the per SNP effect sizes (reweighted by 

SBayesR39), summing across all SNPs, using the PLINK –score function. We restricted analyses of 



 

 24 

the target dataset to the subset of participants of inferred European ancestry. The PGS was 

standardised by subtracting the mean and dividing by the standard deviation of the UKB controls. 

Methylation data: We used summary statistics from the MINERvA DNA methylation study of 

Danish infant blood spot samples38. We note that this is a valuable dataset as samples were 

obtained from infants before Autism Spectrum Disorder diagnosis (versus other datasets including 

the AAB which involved ascertainment based on prior diagnosis). We applied a p-value threshold 

for association of methylation probes autism in the MINERvA dataset of p<1x10-3, leaving 415 

probes. Of these, 397 overlapped with probes in the AAB methylation dataset, which had 

undergone filtering to exclude probes with standard deviation <0.2, and MASK probes which are 

often subject to technical issues such as cross-hybridisation40. Subsequently, we generated 

methylation genomic scores (MGS) from these 397 probes, by multiplying their weights from the 

reference MINERvA study by the normalised methylation beta values in the AAB methylation 

dataset and summing across all 397 probes. We then standardised these MGS scores by 

subtracting the mean and dividing by the standard deviation of the individuals included within the 

AAB dataset. 

Justification of exclusion of metagenomics and lipidomics data: We did not include the 

metagenomics or lipidomics data within this predictor for a few reasons: first, there are no external 

datasets that we could use as independent discovery data to identify predictors for evaluation in 

the AAB as a target cohort. Second, there was negligible association of both the gut microbiome 

and lipidome with autism diagnosis, and thus there is limited benefit from using a K-folds cross-

validation approach with this data. 
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3. Findings 

3.1 Biospecimen receipt and processing 

Biospecimens collected from Australian Autism Biobank (“Biobank”) participants recruited at each 

of the four clinical sites (Perth, Melbourne, Sydney, Brisbane) were receipted and processed by 

The University of Queensland Human Studies Unit (HSU). 

Over the duration of the active recruitment phase of the Biobank (ending 30th June 2018), a total of 

3,707 biological samples were receipted by HSU, including blood samples from >2,000 Biobank 

participants, stool samples from >400 child participants, urine samples from nearly 600 child 

participants and hair samples from 663 child participants (Table 3.1.1).  

Table 3.1.1: Autism CRC biospecimens receipted and processed at the UQ HSU Laboratory by participant group. 

Sample type Proband Mother Father Sibling Control Total 
participants 

Blood 702 588 399 220 117 2026 

Stool 220 0 0 98 83 401 

Urine 318 0 0 144 125 587 

Hair 357 0 0 169 137 663 

Saliva 13 4 2 5 6 30 

 

Receipted biospecimens were processed to generate the sample fractions described in Table 

2.2.1. Each (intact) blood collection (comprising EDTA and SST tubes) yielded whole blood (x1), 

plasma (x2), red blood cells (x1), serum (x2), and buffy coat (nucleated white blood cells), from 

which genomic DNA was isolated. Intact stool and urine collections from autistic children, non-

autistic siblings and controls yielded 6 and 8 aliquots, respectively. Not all receipted blood, stool 

and urine collections yielded all fractions, due primarily to lower-than-expected volumes. 

In total, across all receipted biospecimens, in excess of 24,000 high-quality sample fractions were 

generated by HSU and on-shipped (with the exception of the buffy coat and saliva samples) to the 

Biobank at Wesley Medical Research (Table 3.1.2).  
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Table 3.1.2: Biospecimen fractions generated by the HSU Laboratory for on-shipping to the Biobank. 

Sample type Proband Mother Father Sibling Control Total 
participants 

Total 
fractions 

Whole Blood 657 584 392 213 115 1961 1961 

Plasma A# 677 587 396 217 117 1994 1994^ 

Plasma B# 661 587 395 216 116 1975 1975 

Red Blood Cells 676 587 395 217 117 1992 1992 

Serum A# 696 586 394 219 49 1944 1944 

Serum B# 683 585 394 218 45 1925 1925 

Paxgene 149 131 90 56 9 435 435 

Stool A# 219 0 0 98 81 398 1196^ 

Stool B# 213 0 0 96 80 389 1159 

Urine aliquot 318 0 0 144 125 587 4735 

Hair 357 0 0 169 137 663 663 

Saliva 13 4 2 5 6 30 30 

DNA Stock* 707 638 423 220 118 2106 2106 

DNA Variables* 725 631 422 241 122 2141 2141 

* ‘DNA Variables’ provides the total number of DNA tubes and ‘DNA Stock’ details the total number of samples for which 

there is extracted DNA. 

^ A number of the samples/fractions may have been used for various genomic assays. 
# Plasma and serum samples were divided into A and B samples for biobanking. Stool samples were collected in 

duplicate (A and B), with each then divided into three fractions, for a total of six per participant.  

In addition to receipt and processing of primary biospecimens, HSU also receipted into the Biobank 

a large collection of blood samples and associated sample fractions, RNA and DNA from a 

Western Australian family-based autism cohort (192 autistic, 171 mothers, 107 fathers) recruited 

between 2011 and 2016, on-sent from PathWest (Table 3.1.3). 
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Table 3.1.3: PathWest blood samples and fractions receipted by HSU. 

Sample type Proband Mother Father Sibling Control Unknown Total 
participants 

Total 
fractions 

Blood 188 170 106 0 0 4 468 N/A 

Plasma 187 168 106 0 0 1 462 938 

Serum 185 165 105 0 0 1 456 468 

Buffy Coat 183 165 102 0 0 1 451 568 

RNA 185 119 73 0 0 3 380 749 

DNA Stock  1 3 4 0 0 0 8 8 

DNA Variables  187 168 107 0 0 0 462 462 

The total number of biological samples (blood: 2,490, stool: 398, urine: 587, hair: 663, saliva: 30) 

and associated fractions (plasma, serum, red blood cells, buffy coat, stool, urine, hair, saliva, RNA, 

DNA) in the Biobank was 4,168 and >24,000, respectively. 

3.2 Genetics 

A full description of the analysis of common single nucleotide polymorphisms (SNP) and rare copy 

number variants (CNVs) in the Biobank dataset is available in Yap et al. (2021)4.  

3.2.1 Common genetic variation 

A total of 7,068,672 SNPs (6,991,521 autosomal markers and 77,151 on chromosome X) and 

2,477 Biobank individuals (including n=436 families with both parents and ≥1 affected child) 

passed quality control, with Europeans the predominant ancestry (n=1,964 individuals, n=323 

families), followed by South Asian (n = 248 individuals), East Asian (n = 45) and African (n = 10).  

We used polygenic scoring (PGS) to characterise common genetic variation for autism, IQ and 

sleep (chronotype) in the Biobank. We included IQ because others have reported a positive 

genetic correlation with autism7, which is paradoxical as intellectual disability is a common co-

occurring condition. We included chronotype because sleep issues are common among people on 

the spectrum41,42, potentially due to shared genetic factors7.  
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We first tested for differences in PGS for autism, IQ and chronotype between each of the Biobank 

groups (ASD, SIB, UNR) and the UKB controls. For Autism, the mean PGS was significantly higher 

in the Biobank Autism Spectrum Disorder group than the UKB controls (p = 6.1x10−13), but the 

Biobank SIB (p = 4.9x10−3) and UNR (p = 3.0x10−3) groups also had higher mean ASD PGS than 

the UKB at a nominal threshold, and there was no difference in mean ASD PGS between the ASD 

and SIB groups or ASD and UNR controls (Figure 3.2.1.1a). We found no evidence for Biobank 

group differences for IQ PGS, including in relation to the UKB controls (Figure 3.2.1.1b), or for 

chronotype PGS. We also found no evidence for over-transmission of autism or IQ PGS to autistic 

children versus their non-autistic siblings in the Biobank, likely due to the small size of the dataset. 

Next, we explored whether the ASD PGS predicted diagnosis of autism in the Biobank, in addition 

to other Autism-related phenotypes, including ADOS-2 calibrated severity score in the ASD group, 

Social Responsiveness Scale (SRS) in the SIB and UNR groups, and the Communication 

Checklist-Adult in parents (chosen in lieu of any autism spectrum questionnaires available across 

all participant groups). We also determined whether ASD PGS was predictive of indicators for age 

of first parental concern and age of diagnosis, and other autism-associated phenotypes, including 

the Short Sensory Profile in the ASD group and cognitive measures in children (WISC-IV 

composite score or MSEL non-verbal developmental quotient) and parents (WASI matrix reasoning 

score). We stratified analyses of the cognitive phenotypes in children into ASD and SIB/UNR 

groups, because IQ is genetically correlated with autism, and so we hypothesised that ASD PGS 

may exhibit different relationships with IQ or developmental quotient depending on diagnostic 

status. No associations (after multiple testing correction) were found between ASD PGS and ASD 

diagnostic status, likely because the Grove et al. ASD GWAS remains underpowered for 

prediction. However, there were nominal associations between ASD PGS and quantitative traits 

such as MSEL non-verbal developmental quotient (r = -0.11, p = 7.4x10−3 in the ASD group alone) 

and marginal association with parental WASI matrix reasoning score (r = 0.07, p = 5.5x10−2). 

We performed similar prediction analyses using IQ PGS, given evidence (as noted above) for a 

positive genetic correlation with autism, which is counter-intuitive in view of the co-occurrence of ID 

with autism. IQ PGS showed a significant positive correlation with parental IQ (WASI matrix 

reasoning domain, r = 0.17, p = 8.0x10−7; Figure 3.2.1.1c). We also observed a nominally 

significant correlation between IQ PGS and WISC-IV composite score in the SIB/UNR group (r = 

0.24, p = 2.1x10−3; Figure 3.2.1.1e), whereas there was no evidence for a correlation in the ASD 

group (r=0.07, p=0.24), including when the ASD group was stratified by ID (Figure 3.2.1.1d). There 

were no significant relationships between IQ PGS and MSEL non-verbal developmental quotient, 

age of diagnosis, age of parental concern or Short Sensory Profile.  



 

 29 

Finally, we investigated whether chronotype PGS predicted propensity for sleep conditions in the 

Biobank, given evidence that sleep issues are common in autism41,42. There was no evidence for a 

significant correlation between chronotype PGS and Children’s Sleep Habits Questionnaire 

(CSHQ) raw score among all children (r = 0.06, p = 7.7x10−2), but we observed a weak (nominally 

significant) positive correlation in the ASD group (r = 0.13, p = 1.9x10−3; Figure 3.2.1f).  

Figure 3.2.1.1 Analysis of polygenic scores (PGS) for ASD, IQ and chronotype in the Australian Autism Biobank. 
Mean PGS (± 95% CI) for the ASD, SIB and UNR groups for (a) ASD, and (b) IQ. Scatterplots illustrating correlation 

between the following pairs of traits, with coefficient and p-value in the bottom right corner of each panel for the single 

combined analysis: (c) IQ PGS and measured IQ (WASI) in parents with fathers in red and mothers in green (overall 
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r=0.17, 8.0x10−7); (d) IQ PGS and measured IQ ( WISC fsiq composite) in the AAB ASD group with IQ < 70 (red), ASD 

group with IQ ≥ 70 (green), SIB group (blue) and UNR group (purple), (overall r = 0.1, p = 4.0x10−2); (e) IQ PGS and 

measured IQ ( WISC fsiq composite) in the SIB (red) and UNR (green) groups (overall r = 0.24, p = 2.1x10−3); (f) 

chronotype PGS and Children’s Sleep Habits Questionnaire in the ASD (red), SIB (green) and UNR (blue) groups 

(overall r = 0.06, p = 7.7x10−2). The correlation coefficient for the ASD subset in red is r = 0.13 (p = 1.9x10−3).  

3.2.2 Rare copy number variation 

We obtained consensus calls for 885 rare exonic CNVs from 723 individuals in the Biobank cohort 

(Table 3.2.1), after quality control (see Methods). As a first step, we determined whether our 

pipeline validated previously reported CNVs, finding that 7 of 8 clinical genetic diagnoses were 

identified, except for an individual with Phelan-McDermid syndrome (caused by a 22q13 deletion of 

chr22: 51,159,408–51,166,043 which was smaller than the lower detection size in our pipeline).  

We identified 13 individuals with CNVs that overlapped high-confidence autism- or ID-associated 

CNVs from the ClinGen (https://dosage.clinicalgenome.org/pathogenic_region.shtml) and/or 

DECIPHER (https://decipher.sanger.ac.uk/disorders/syndromes/list)43 databases (Table 3.2.2), 

four of which had been reported in the Biobank phenotype dataset. Ten of the 13 were from the 

ASD group, and three from mothers (including one transmitted from mother to child). The 

phenotypic data of the participants with overlapping autism/ID-associated CNVs was inspected, 

finding that many of these participants had reported one or more clinical features (e.g., 

developmental delay, ID, seizures, macrocephaly and/or sleep disturbances) consistent with their 

genetic diagnosis. 

Table 3.2.2.1 Summary of group CNV statistics in the Australian Autism Biobank 

Group n_all n_ind n CNV % with 
CNV 

no. 
median 

no. 
mean 

ASD/ID 
CNV del 

ASD/ID 
CNV dup 

ASD/ID/DD 
genes del 

ASD/ID/DD 
genes dup 

ASD 885 263* 330 29.72 0 0.37 11 4 5 3 

FTR 504 134 167 26.59 0 0.33 0 0 1 0 

MTR 752 232 280 30.85 0 0.37 3 0 3 0 

SIB 218 57 68 26.15 0 0.31 0 0 0 0 

UNR 116 37 40 31.90 0 0.34 0 0 0 0 

n_all: number of individuals within the entire group; n_ind: number of individuals with a rare exonic CNV in the group; 

n_CNV: number of rare exonic CNVs in that group; % with CNV: % of individuals with a rare exonic CNV. no. median: 

median number of rare exonic CNVs; no. mean: mean number of rare exonic CNVs; ASD/ID CNV del: number of rare 

exonic deletion CNVs overlapping with the ClinGen + DECIPHER deletion CNV set; ASD/ID CNV dup: number of rare 

https://dosage.clinicalgenome.org/pathogenic_region.shtml
https://decipher.sanger.ac.uk/disorders/syndromes/list


 

 31 

exonic duplication CNVs overlapping with the ClinGen + DECIPHER duplication CNV set; ASD/ID/DD genes del: number 

of rare exonic deletion CNVs overlapping with the Satterstrom et al. + DDD gene set; ASD/ID/DD genes dup: number of 

rare exonic duplication CNVs overlapping with the Satterstrom et al. + DDD gene set (100% overlap required). 

A further 12 individuals (8 autistic, 4 parents) were found to carry CNVs overlapping exons of 

protein coding genes with prior robust evidence for association with autism in the most recent 

autism whole-exome sequencing study44 or developmental delay (DD), as reported by the 

Deciphering Developmental Disorders (DDD) study45 (Tables 3.2.3). We identified three instances 

in which the CNV appeared to have been transmitted from mother to child. The status of the 

remaining CNVs (i.e., transmitted or de novo) was unclear, because we did not have complete 

parental information for those children. 

We also identified large (>1Mb in length) CNVs in 37 Biobank participants (19 ASD, 1 SIB, 3 UNR, 

11 mothers, 3 fathers) that did not overlap any known autism or ID-associated CNVs or gene, a 

subset of which were shared by relatives, including a 1.3 Mb 16p23.1 deletion occurring in a father-

child (ASD) pair; a 1.9 Mb 2q37.3 deletion occurring in a mother–child (ASD) pair; a 2.4 Mb 4q35.2 

duplication occurring in a mother and two of her children (both in the UNR group); and a 2.3 Mb 

1p34.2 deletion in an identical twin pair (both in the ASD group).  

Table 3.2.2.2 ASD/ID-associated CNVs detected in the Australian Autism Biobank dataset. 

Diagnosed children 

CNVs with a critical gene 

Group Sex Type CNV 
coordinates 

ASD/ID-associated 
CNV 

Reference 
coordinates Critical gene coordinates 

ASD M Dup chr17:1196088-
1326656 

17p13.3 (Miller-
Dieker syndrome) 
region (includes 
YWHAE and 
PAFAH1B1)^ 

chr17:1247833-
2588909 

YWHAE: chr17:1247569-
1268350; PAFAH1B1: 
chr17:2541583-2585096 

ASD M Dup chr17:29111368-
30343735 

17q11.2 recurrent 
region (includes NF1) 

chr17:29097069-
30264027 chr17:29422328-29701173 

CNVs without a critical gene 

Group Sex Type CNV 
coordinates 

ASD/ID-associated 
CNV 

Reference 
coordinates Overlap % of reference 

ASD F Dup chr15:22321690-
32515100 

15q11q13 recurrent 
(PWS/AS) region 
(BP1-BP3, Class 1) 

chr15:22832519-
28379874 100.00 
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ASD M Del chr15:29079105-
32515100 

15q13.3 recurrent 
region (D-CHRNA7 
to BP5) (includes 
CHRNA7 and 
OTUD7A) 

chr15:32019621-
32445405 100.00 

ASD M Del chr15:31007901-
32515100 

15q13.3 recurrent 
region (D-CHRNA7 
to BP5) (includes 
CHRNA7 and 
OTUD7A) 

chr15:32019621-
32445405 100.00 

ASD M Del chr15:31115226-
32515100 

15q13.3 recurrent 
region (D-CHRNA7 
to BP5) (includes 
CHRNA7 and 
OTUD7A) 

chr15:32019621-
32445405 100.00 

ASD* M Del chr16:21973913-
22414463 

Recurrent 16p12.1 
microdeletion 
(neurodevelopmental 
susceptibility locus) 

chr16:21946524-
22467284 84.60 

ASD M Del chr16:28832565-
29044745 

16p11.2 recurrent 
region (distal, BP2-
BP3) (includes 
SH2B1) 

chr16:28822635-
29046499 94.78 

ASD F Del chr22:18877787-
21461607 

22q11.2 recurrent 
(DGS/VCFS) region 
(proximal, A-D) 
(includes TBX1) 

chr22:15912231-
21465672 99.84 

ASD F Del chrX:6488784-
8135053 

Xp22.31 recurrent 
region (includes STS) 

chrX:6455812-
8133195 98.02 

Parents 

MTR* M Del chr16:21956457-
22414463 

Recurrent 16p12.1 
microdeletion 
(neurodevelopmental 
susceptibility locus) 

chr16:21946524-
22467284 87.95 

MTR F Del chr22:19036154-
20244259 

22q11.2 recurrent 
(DGS/VCFS) region 
(proximal, A-B) 
(includes TBX1) 

chr22:18912231-
20287208 87.86 

MTR F Del chrX:6456940-
8135053 

Xp22.31 recurrent 
region (includes STS) 

chrX:6455812-
8133195 99.93 

ASD/ID-associated CNVs were taken from ClinGen and DECIPHER datasets, filtering for ASD/ID-associated loci. For 

reference CNVs with a critical gene, AAB CNVs were annotated where there was any overlap with the critical gene, with 

the critical gene coordinates provided in the "Other information" column. For reference CNVs without a critical gene, the 

AAB CNV was called as overlapping with an ASD/ID-associated CNV based on ≥ 80% overlap with the reference 

coordinates, with percentage overlap provided in the "Other information" column. Genome coordinates are hg19. 

Biobank Sample IDs have been anonymized. *Refers to parent–child pairs between which ASD/ID-associated CNVs 

appeared to be inherited in this dataset. 
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Table 3.2.2.3 CNVs identified in the Australian Autism Biobank overlapping ASD- and ID/DD-associated genes.  

Group Sex CNV coordinates Gene Overlap % of gene Cytoband 

Diagnosed children 

ASD* F chr2:148730454-148883419 MBD5 21 2q23.1 

ASD+ M chr10:27978030-28041669 MKX 78 10p12.1 

ASD M chr19:10609319-12464434 ELAVL3 100 19p13.2 

ASD^ M chr20:61824507-62321517 KCNQ2 100 20q13.33 

ASD^ M chr20:61802599-62268955 KCNQ2 100 20q13.33 

ASD M chr2:32277654-32818823 SPAST 100 2p22.3 

ASD M chr4:6104865-7415038 KIAA0232 100 4p16.1 

ASD F chr15:22321690-32515100 GABRB3 100 15q12 

Parents transmitting CNVs 

Mother* F chr2:148730454-148883419 MBD5 21 2q23.1 

Mother+ F chr10:27978030-28041669 MKX 78 10p12.1 

Mother^ F chr20:61802599-62321517 KCNQ2 100 20q13.33 

*, +, ^: denote CNVs shared by individuals within the same family (either inherited from parents, or shared between 

siblings), suggesting inheritance. CNV: copy number variant. 
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A density plot of CNV deletions and duplications across all individuals, in relation to chromosome, 

cytoband, ASD/ID-associated CNVs and ASD/ID/DD-associated genes is shown in Figure 3.2.2.1.  

 

Figure 3.2.2.1 Karyograms showing location and density of deletion and duplication CNVs identified in the 
Australian Autism Biobank. Red density track represents CNVs detected in the ASD subset. Blue density track 

represents CNVs detected in the non-ASD subset (undiagnosed siblings, unrelated undiagnosed children, parents), 

noting that there are instances in which parents have CNVs overlapping ASD/ID-associated regions. Yellow regions 

depict ASD/ID-associated CNVs from ClinGen and DECIPHER. Green regions denote ASD/ID/DD-associated genes 

reported by Satterstrom et al. and the DDD study.  
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3.3 Gut microbiome  

3.3.1 Data summary 

Stool-derived metagenomic profiles were generated by Microba from a total of 199 age and sex-

matched Biobank child participants and 49 unrelated controls from the Queensland Twin 

Adolescent Brain (QTAB) study. Between 4.8 and 24.8 million reads passed quality control per 

sample. Down sampling to a standard depth of 7 million read pairs was performed to alleviate the 

effect of differential sensitivity in association analyses, with all QC-ed reads retained for the n=19 

samples with <7M reads. Data on n=247 individuals with matching dietary data (Australian Eating 

Survey 26,27) were retained for analyses. A total of 1,758 species were identified in the dataset, of 

which 607 remained for analysis after removing low prevalence species (<10 non-zero values). 

3.3.2 Variance in autism diagnostic status and other traits associated with the 
microbiome 

First, we estimated the proportion of phenotypic variance associated with the gut microbiome for 

autism diagnosis and a range of other traits, including neurodevelopmental traits (IQ-DQ, 

Children’s Sleep Habits Questionnaire (CHSQ) raw score), phenotypes with intuitive relationships 

with the microbiome (dietary pe_PCs, dietary diversity, stool consistency; see Methods), and CD4 

T-cell proportion. This variance estimate – the microbiome-association-index (or “b2”) – is 

analogous to heritability (h2) from genetic analyses and provides an upper limit for predictive ability. 

Whereas h2 reflects causality, b2 may reflect cause or consequence of trait variation. This analysis 

involves calculating an “omics relatedness matrix” (ORM) from microbiome features between each 

pair of individuals and regressing against the trait in a linear mixed model framework46. We created 

ORMs from several measures of microbiome composition, at the level of species and genes, and 

stratifying into common (those with median count > 0) versus rare features (median count=0, but 

with >=10 non-zero counts in the full sample).  

As a benchmarking exercise, we first analysed age and BMI. Our results based on common 

species (n=96) were consistent with previous species-level b2 estimates for these traits in adults 

(Rothschild et al 2020) (Figure 3.3.3.1). Notably, gene-level ORMs were associated with greater 

variance for both age and BMI (Figure 3.3.3.1), suggesting that taxonomic and functional 

microbiome measures capture different elements of phenotypic variance. These results were 

robust to antibiotics usage. 
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In notable contrast to the results for age, 

species- and gene-level b2 estimates for autism 

diagnosis were weak and non-significant 

(maximum: rare genes b2=7%, SE=16%, 

p=0.33; covariates: age, sex, pe_PC1-3), as 

were those for IQ-DQ (common species b2=6%, 

SE=13%, p=0.39; covariates: age, sex), CSHQ 

raw score (common species b2=10%, SE=9%, 

p=0.17; covariates: age, sex) (Figure 3.3.2.1) 

and clr-transformed CD4 T-cell proportion 

(results not shown).  

Unlike these neurodevelopmental and immune 

traits, we observed strong FDR-significant b2 

estimates for both stool consistency (rBSC) 

(covariates: age, sex, group, pe_PC1-3; rare 

species b2=41%, SE=11%, p=8.7x10-6; rare 

genes b2=64%, SE=20%, p=2.5x10-5) and 

dietary pe_PC1 (rare genes: b2=48%, SE=15%, 

p=3.8x10-4; covariates: age, sex, participant 

group) (Figure 3.3.2.1).  

Figure 3.3.2.1 Proportion of phenotypic variance 
associated with microbiome composition. Rows denote 

phenotypes, including benchmarking traits (age and BMI; 

with dotted lines showing results from the Rothschild et al. 

(2020) species-level analysis), neuropsychiatric traits 

(ASD, IQ-DQ composite score, CSHQ raw score) and 

microbiome-related traits (stool consistency measured as 

regrouped Bristol Stool Chart (rBSC), pe_PC1-3, dietary 

diversity calculated using Shannon index). The y-axis 

shows the proportion of total phenotypic variance 

associated with the relevant measure of microbiome 

composition. Columns denote dataset used to generate 

the ORM. “*common” indicates ORMs calculated using 

variables with median>0; “*rare” indicates ORMs 

calculated using variables with median=0; all datasets are 

from the metagenomics dataset except “AES_food” which 

is based on the Australian Eating Survey food-level data. 
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3.3.3 Differentially abundant species and genes 

Next, we looked for specific microbial taxa and genes associated with autism diagnosis, testing for 

differential abundance of 607 species, 297 genera, 38 orders, 15 phyla. We used ANCOMv2.131, a 

robust, non-parametric method that accounts for multiple testing and adequately controls the false 

positive rate32.  

In a comparison of ASD and the combined SIB+UNR groups, with age, sex and pe_PC1-3 as 

covariates, only the species Romboutsia timonensis was significantly differentially abundant (lower 

abundance in ASD) at the conventional detection threshold >0.7 (Figure 3.3.3.1a). We were unable 

to account for familial relatedness due to model singularities, so performed a sensitivity analysis, 

comparing the ASD and UNR groups (minus SIBs), again finding R. timonensis, and reduced 

Erysipelatoclostridium sp003024675 at detection threshold >0.6 (Figure 3.3.3.1b).  

The results were largely consistent when excluding participants (n=10) reporting antibiotic use at 

sample collection. In differential-presence testing (Fisher’s exact test, ASD vs UNR), the same two 

taxa (R. timonensis p=3.9x10-4, 56/99 ASD vs 78/97 UNR; E. sp003024675 p=1.5x10-4, 6/99 ASD 

vs 25/97 UNR) were also the top ranked species, though neither survived FDR-correction. In 

permutation testing (n=1000 random shuffles of diagnostic labels for each sample), these taxa had 

p≤0.001 when compared to the empirical distributions for both ANCOM and Fisher’s exact tests. 

Notably, we failed to replicate previously-reported autism-gut microbiome associations47 with the 

genus Prevotella, phylum Firmicutes, Clostridiales clusters and species of Bifidobacterium. 

However, we note that R. timonensis (family Peptostreptococcaceae, order Clostridiales, class 

Clostridia, phylum Firmicutes A) and E. sp003024675 (family Erysipelatoclostridiaceae, order 

Erysipelotrichales, class Bacilli, phylum Firmicutes) are members of these phylogenetic groups. 

Poor replication may be related to: 1) prior microbiome studies being underpowered and prone to 

sampling biases; 2) technical differences between metagenomics and 16S rRNA sequencing – the 

former providing more detailed taxonomic resolution, which is relevant as R. timonensis was only 

recently isolated in human gut in the setting of malnutrition48; 3) different statistical methods, with 

variable use of adequate adjustment for multiple-testing and/or confounders.  

Unlike 16S sequencing studies (which have dominated the autism microbiome literature), 

metagenomics sequencing permits functional insights. Hence, we looked for microbial genes 

associated with autism diagnosis. We focused on relative abundances of metagenome annotations 

to MetaCyc groups, MetaCyc pathways and EC gene families (as opposed to the entire gene set 

due to computational and multiple-testing burden), in order of increasing resolution, finding no 

significant associations. 
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Figure 3.3.3.1 Differential abundance testing in ASD at the level of species (a, b) and genes (c) using ANCOM. 
Plots show differentially abundant species for (a) the full ASD analysis (n=246), (b) ASD versus UNR excluding SIB 

(n=196) and differentially abundant (c) gene-level results for ASD vs SIB+UNR analysis, focusing on n=4,950 genes 

(with >10 non-zero counts) mapping to the R. timonensis genome. The W-statistic (y-axis) represents, for feature_i of n 

total features, the count of Bonferroni-Hochberg-significant p-values from regressing the additive-log-ratio-transformation 

(= log(feature/feature_i) against ASD and covariates age, sex and pe-PC1-3). Dotted lines show W-statistic quantile 

detection thresholds ≥0.6 (green), ≥0.7 (orange), ≥0.8 (purple) and ≥0.9 (pink) respectively; features exceeding detection 

threshold >0.7 are considered significantly differentially abundant. The x-axis (“clr mean difference”) shows the 

coefficient for regressing the clr-transformed feature against the variable of interest (in this case, Autism diagnosis).  

Next, we sought to identify specific genes or pathways from R. timonensis underlying the autism-

associated signal. We performed ASD vs SIB+UNR differential abundance testing for MetaCyc 

groups, MetaCyc pathways, EC gene families, and \n=4,950 specific genes with >10 non-zero 

values across samples) directly mapping to R. timonensis in our dataset (covariates: age, sex, 

pe_PC1-3). We identified six genes with detection threshold >0.7 (Figure 3.3.3.1c), one of which 

overlapped with the EC gene set, whereas there were no associations with MetaCyc groups or 

pathways. Consistent with the species-level direction of effect, all significantly differentially 

abundant genes were reduced in the ASD group. Their functions included metabolism of amino 

acids (L-glutamine, L-lysine, L-methionine and L-threonine), purines and pyrimidines, 

carbohydrates (galactose), as well as bacterial spore germination and dsDNA digestion. We note 
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that these results represent potential transcription, and that metatranscriptomics data would be 

needed to evaluate actual expression. 

We performed species-level differential abundance analysis for IQ-DQ composite score, finding 

that lower Bifidobacterium sp002742445 passed detection threshold >0.7 in the ASD vs SIB+UNR 

comparison, but only passed detection threshold >0.6 in the ASD vs UNR sensitivity analysis. 

There were no virome associations in the ASD vs SIB+UNR analysis (n=200 taxa). 

3.3.4 Restricted diet mediates autism-microbiome associations 

Whereas autism-associated signals were scarce in the metagenomics data, there were consistent 

associations with diet: in the variance component analysis, the dietary ORM was strongly 

associated with autism (R2=14%, SE=7%, p=2.2x10-5) (Figure 3.3.4.1), and we observed 

significantly lower dietary pe_PC3 in autism (suggesting reduced meat intake) compared to SIB 

and UNR, after adjusting for age and sex. Given that children on the spectrum favour restricted 

diets49-53, we explored the effect of dietary restrictedness on the microbiome and stool consistency.  

The ASD group had significantly less-diverse diet (estimated using dietary alpha-diversity from the 

Shannon index of 123 food-level variables) than both SIB and UNR (one-way ANOVA p=1.3x10-7), 

even after adjusting for age and sex (one-way ANOVA p=2.2x10-6) (Figure 3.3.4.1a). Investigating 

this link between autism and dietary diversity further, we hypothesised, on the basis that there was 

no evidence for direct relationships between autism and microbiome alpha- or beta-diversity, that 

microbiome diversity may be affected downstream of diet. Consistent with this hypothesis, there 

was a significant positive correlation between dietary and taxonomic diversity (r=0.25, p=6.3x10-5) 

(Figure 3.3.4.1c), and in reciprocal regression analyses, dietary and taxonomic diversity were 

significant predictors of each other (Figure 3.3.4.1d-e). Furthermore, the largest effects in the 

dietary diversity regression were from group (UNR: b=0.035, p=3.0x10-6; SIB: b=0.021, p=1.4x10-

2), whereas taxonomic diversity was not associated with group (Figure 3.3.4.1e). This suggests 

that autism-associated dietary restrictedness (but not diagnosis itself) is associated with reduced 

microbiome diversity. These effects were robust in sensitivity analyses accounting for antibiotic and 

probiotic use. 
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Figure 3.3.4.1 Relationships between dietary and taxonomic diversity (measured using Shannon Index) and 
ASD-related phenotypes. a) Boxplot of dietary diversity (residuals after regressing out age and sex) between participant 

groups (ANOVA p=2.1x10-6). b) Boxplot of taxonomic diversity (residuals after regressing out age and sex) between 

participant groups (ANOVA p=0.15). c) Correlation between dietary and taxonomic diversity (r=0.25, p=6.3x10-5). d-i) 

Linear model plots54, showing effect sizes (+/-95%CI), test statistics, degrees of freedom and p-values for each term:  d) 

Linear model coefficients taking dietary diversity as the dependent variable. e) Linear model coefficients taking 

taxonomic diversity as the dependent variable. f) Linear model coefficients taking rBSC as the dependent variable. g) 

Linear model coefficients regressing dietary (upper) and taxonomic (lower) diversity against ASD PGS. h) Linear model 

coefficients regressing dietary (upper) and taxonomic (lower) diversity against ADOS2/G RRB score. i) Linear model 

coefficients regressing dietary (upper) and taxonomic (lower) diversity against ADHD-ASD-TS PGS. j) Proposed 

synthesis of relationships between autism spectrum measures, restricted and repetitive interests, sensory preferences, 

dietary diversity, taxonomic diversity and stool consistency. 

Next, we explored relationships between dietary and taxonomic diversity and stool consistency 

(rBSC). We replicated a previously reported55-57 inverse relationship between rBSC and taxonomic 

diversity (b=-0.41 p=3.7x10-3 without covariates) that was robust to covariates. We also identified 

nominally significant association of rBSC with dietary diversity (b=-2.34, p=3.7x10-2 in the model 

without covariates), although this did not survive covariate adjustment. Notably, the taxonomic 

diversity model (without covariates) explained greater variance (R2=3.2%) than the dietary diversity 

analysis (R2=1.5%), and in models of rBSC with both taxonomic and dietary diversity fitted as 

explanatory variables, only taxonomic diversity was significant (Figure 3.3.4.1f). Overall, this 

suggests that looser stool consistency (higher rBSC) is proximally related to reduced taxonomic 

diversity, which is downstream of reduced dietary diversity. This mechanism may explain findings 

of increased gastrointestinal issues with increased repetitive behaviours58. 

3.3.5 Upstream drivers of dietary and taxonomic diversity 

We investigated whether behavioural factors diagnostic of autism are upstream drivers of restricted 

diet and reduced dietary and taxonomic diversity. To achieve this, we leveraged both psychometric 

measures and polygenic scores (for autism and other phenotypes).  

First, we confirmed the autism-dietary diversity association through analysis of continuous autism-

spectrum measures. We identified an inverse association between autism polygenic score (Yap et 

al., 2021) and dietary diversity (b=-1.0e2, p=1.2x10-2), but not taxonomic diversity (b=-4.4e-2, 

p=0.17) (Figure 3.3.4.1g). Phenotypically, we observed a negative, marginal association between 

dietary diversity and Social Responsiveness Scale t-score (b=-6.4x10-4, p=7.8x10-2; n=97 AAB 

children: 10 ASD and 87 SIB/UNR).  
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Second, we hypothesised that repetitive-restrictive behaviours may underlie a restricted diet 

upstream of microbiome changes. Phenotypically, we observed FDR-significant negative 

association between higher combined59 ADOS2/G restricted and repetitive behaviour (RRB) scores 

and taxonomic diversity (b=-4.3 x10-2, p=3.8 x10-3, with covariates age and sex: b=-6.4 x10-3, p=1.8 

x10-2), and nominal negative association with dietary diversity (b=-4.3 x10-2, p=2.4 x10-2) (n=97 

ASD group only, Figure 3.3.4.1h). We then leveraged GWAS summary statistics from a cross-trait 

analysis33 of autism, attention-deficit hyperactivity disorder, and Tourette’s Syndrome (hereafter 

called ASD-ADHD-TS) to generate PGS for restrictive-repetitive behaviours. We confirmed that 

ASD-ADHD-TS PGS correlated with ADOS-2/G RRB scores in the full AAB (r=0.10, p=3.2x10-3, 

n=868), and so represents a genetic proxy for RRBs. We found marginal negative association 

between ASD-ADHD-TS PGS and dietary diversity (b=-7.2x10-3, p=0.10), but not with taxonomic 

diversity (b=-4.7x10-2, p=0.18; Figure 3.3.3i). 

Third, on the basis that sensory sensitivity may also underlie restricted dietary preferences60, we 

explored relationships with Short Sensory Profile raw Sensory score in a small autism-only subset 

of the data for which this instrument was completed and found marginal associations with both 

dietary (b=-9.5x10-4, p=6.9x10-2) and taxonomic diversity (b=-6.8x10-2, p=8.6x10-2), (n=91).  

In contrast, we found no evidence for hypothesized links between both dietary and taxonomic 

diversity measures and autism-associated traits such as anxiety, neuroticism61,62 or functional 

gastrointestinal disorders (e.g., irritable bowel syndrome). 

Overall, these data suggest that autism-associated preferences and behaviours drive reduced 

dietary diversity, which mediates weak autism-microbiome relationships (Figure 3.3.4.1j). However, 

we cannot rule out the possibility that these downstream microbiome effects could feed-back and 

influence behaviour, given that there was a stronger association between ADOS-2/G RRB score 

and taxonomic diversity than dietary diversity (Figure 3.3.4.1h). 

A manuscript describing analysis of this dataset has been provisionally accepted for publication in 

Cell: Yap, C.X., et al. “Restricted diet mediates autism-gut microbiome associations.” 

3.4 DNA methylation 

Blood-derived genome-wide DNA methylation data were generated for a total of 468 Biobank 

participants, including 255 autistic children, 125 non-autistic siblings and 88 unrelated controls 

using the Illumina EPIC Human Methylation array. 
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3.4.1 Variance explained by the methylome 

We used OREML to quantify the proportion of variance for various traits associated with variation 

in genome-wide DNA methylation. The traits analysed included autism diagnostic status, autism 

polygenic score, Short Sensory Profile (SSP_sensory) raw sensory score, Children’s Sleep Habits 

Questionnaire (CSHQ) raw score, a composite score for IQ (composite scores from the NIH 

Toolbox age-adjusted questionnaire) and DQ (Mullen’s Scales of Early Learning non-verbal 

composite score), hereafter referred to as “IQ-DQ”, and age. We also examined the effect of 

including covariates (age, sex, genotype PCs and cell-type proportions). Within the AAB-QTAB 

dataset, we found no evidence for an association between DNA methylation and any 

neurodevelopmental trait, whereas we identified a very strong association for age.  

 

Figure 3.4.1.1: Variance component analysis for traits (grey box text) using a relatedness matrix calculated 
using methylation data from the AAB-QTAB study. Colours denote different combinations of covariates: green 

denotes no covariates; orange denotes demographic covariates (sex, batch, genotyping PCs, and age for all phenotypes 

except for age); purple denotes demographic variables and principal components capturing >95% of variance in cell-type 

proportions. Text denotes the percentage of variance in the trait associated with the methylation relatedness matrix. Error 

bars correspond to standard error for the estimate. ASD: autism spectrum disorder diagnosis; ASD_PGS: ASD polygenic 

score; IQ_DQ: composite intelligence quotient and developmental quotient score; SSP_sensory: raw sensory score on 

the Short Sensory Profile-2. 
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3.4.2 Methylome-wide association study (MWAS) and meta-analysis 

We tested for association among 301,589 methylation probes and autism diagnostic status, finding 

no associations within the AAB-QTAB cohort. There were also no significant associations detected 

from meta-analysing MWAS summary statistics from AAB-QTAB (n=468) and MINERvA (n=1,263) 

cohorts (total n=1,731 participants) (Figure 3.4.2.1). 

 

Figure 3.4.2.1: Manhattan plot for the AAB-QTAB and MINERvA MWAS meta-analysis. 

The most significantly-associated probe in the AAB-QTAB and MINERvA meta-analysis was 

cg01122366 (Z=4.79, p=1.67x10-6) – a probe that was only in the AAB-QTAB dataset as it was 

only available on the EPIC array and not the 450K array. This probe is within the gene GALNT2, a 

gene for which it has been reported that loss-of-function variants are associated with a genetic 

syndrome which includes neurodevelopmental delay and autistic features63. The positive direction 

effect (i.e., increased methylation is associated with increased propensity for autism) is also 

consistent with the clinical syndrome being characterised by loss-of-function variants.  

The next-most significant hit corresponded to the methylation probe cg12699865 (p=7.51x10-6, Z-

score=-4.48), on chromosome 20 within the 5’UTR of the RALY gene. This probe was the lead hit 

in the MINERvA analysis (p=7.63e-7)38, but had negligible signal in the AAB-QTAB cohort 

(p=0.62), suggesting that this association was driven by the larger MINERvA cohort. Reassuringly, 

however, both studies demonstrated a negative direction of effect for the association between DNA 

methylation status and autism diagnosis.  
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3.4.3 Conclusions 

We found minimal evidence for association between DNA methylation and diagnosis of autism, 

including in variance components analyses considering all DNA methylations jointly, and in 

methylome-wide association studies of individual probes. We cannot rule out a small effect of DNA 

methylation, and so larger studies will be required to fully assess the relationship between DNA 

methylation and autism. It is also possible that DNA methylation profiles in blood – the main focus 

of this study due to our interest in identifying genomic biomarkers in an accessible tissue – do not 

capture DNA methylation changes in specific brain regions and/or cell types relevant to autism, 

since DNA methylation is known to tissue and cell-type specific. A further possibility is that putative 

DNA methylation changes associated with autism occur during embryonic development, or the 

early post-natal period, prior to autism diagnosis. Overall, further study will be required to establish 

the association of DNA methylation with diagnosis of autism. 

 

3.5 Lipidomics 

Data was available on 781 lipid species in 39 classes for a total of 758 (479 ASD, 160 SIB, 119 

UNR) AAB and QTAB participants, after quality control procedures. A detailed description of outlier 

samples is provided on page 50. 

Variance components analyses: We used the OREML method to assess the association of all 

lipid species (inverse normal transformed) jointly with autism, IQ_DQ, sleep problems, age and 

Tanner developmental stage. We identified strong associations with age and Tanner that were 

robust to inclusion of demographic, batch and dietary covariates (Figure 3.5.1). In comparison, a 

significant association with autism diagnosis in the analysis without covariates was absent in the 

analysis with demographic and batch covariates and was found to be explained by the presence of 

n=64 storage time outliers, all in the ASD group. These storage time outliers belong to the 

PathWest sample, which was collected prior to other subsets of the AAB. Interestingly, we 

observed significant and robust associations with IQ_DQ, and weaker but nonetheless robust 

associations with sleep problems. No association was observed for gross motor skills or Bristol 

Stool Chart. 

In the OREML analysis of dietary phenotypes, we observed strong and significant associations 

with total cholesterol and total protein that were robust to demographic and batch covariates and 

also energy intake (Figure 3.5.2). In comparison, whereas we observed comparable associations 

with total fats, sugars and carbohydrates in analyses without covariates and demographic and 
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batch covariates, these did not survive adjustment for energy intake. The association of lipids with 

cholesterol and protein (in particular) intake, but not fats, is notable. 

 

Figure 3.5.0.1 Variance components analyses for age-related and ASD-related traits (grey box text) using a 
relatedness matrix calculated using inverse normal transformed lipid species data from the AAB-QTAB study. 
Colours denote different combinations of covariates: green denotes no covariates (“nocov”); orange refers to the analysis 

including age (except for age and Tanner phenotypes), sex, batch, injection order and storage time covariates 

(“covdemo”); purple refers to the analysis on the subset of participants for whom dietary data was available (n=260; 

“covdemodiet”). Text denotes the percentage of variance in the trait associated with the lipidomics relatedness matrix. 

Error bars correspond to standard error for the estimate. ASD: autism spectrum disorder diagnosis; IQ_DQ: composite 

intelligence quotient and developmental quotient score. 

Lipidome-wide association studies (LWAS): We tested for association between individual lipids 

and autism diagnosis, ID/DQ, sleep problems, age and Tanner developmental stage. We 

performed analyses at the level of lipid classes and lipid species. For autism, we found one 

significantly associated lipid class (Total PC(O), OR=0.73, SE=0.09, p=7.1x10-4), but no lipid 

species (Figure 3.5.3). For IQ-DQ, we identified two lipid species (PC(P-35:2) (b) and LPC(O-

22:0); Figure 3.5.4), and for sleep problems (measured using the CSHQ), two lipid classes (total 

PE(O), total LPE(P)) and five lipid species (PC(15:0_22:6), PC(P-18:0/22:6), PE(P-19:0/20:4) (b), 

PE(P-20:1/22:6), dimethyl-CE(22:6; Figure 3.5.5) were significant in the final models.  Subsequent 

analyses accounting for diet in a sub-set of 260 individuals with data from the Australian Eating 

Survey (AES), indicated that these associations with autism, ID/DQ and sleep were largely 
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explained by diet, although, in the case of autism this is known to be confounded with diagnosis. In 

contrast to these neurodevelopmental and behavioural traits, we observed much stronger 

associations with age (n=7 lipid classes and n=78 remaining in the final model after backwards 

stepwise regression; Figure 3.5.6) and Tanner developmental stage (n=3 lipid classes and n=14 

species in the final model; Figure 3.5.7). See Appendix B for complete details of all associated lipid 

classes and species. 

 

Figure 3.5.0.2 Variance components analyses for dietary phenotypes (grey box text) using a relatedness matrix 
calculated using inverse normal transformed lipid species data from the AAB-QTAB study. Colours denote 

different combinations of covariates: green denotes no covariates (“nocov”); orange refers to the analysis including age, 

sex, batch, injection order and storage time covariates (“covdemo”); purple refers to the analysis also adjusted for energy 

intake (n=260; “covdemoenergy”). Text denotes the percentage of variance in the trait associated with the lipidomics 

relatedness matrix. Error bars correspond to standard error for the estimate. 

Dyslipidaemia: The existence of a subtype of autism characterised by dyslipidaemia has been 

proposed on the basis of large-scale analysis of electronic health record data, including clinical 

measures of cholesterol and triglycerides64. We sought to replicate these findings, by applying 

clinical thresholds from adults to identify individuals in our AAB+QTAB dataset with dyslipidaemia 

(cholesterol >5.5 mmol/L, triglycerides >2.0 mmol/L). We found no over-representation of autistic 

participants or participants with intellectual disability (defined here as IQ<70) with respect to high 

cholesterol or triglyceride levels (Figure 3.5.8). To account for other variables that may affect lipid 

levels, we took the residuals from a regression of lipid concentrations on covariates (age, sex, 
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batch, injection order and storage time), and defined high cholesterol and triglyceride groups as 

those participants in the top decile. In this analysis, there was again no relationship with autism 

diagnosis, but there was a nominal association between intellectual disability and higher 

triglycerides (OR=1.94, p=3.4e-2). 

 

Figure 3.5.0.3: Association of lipid classes (left) and species (right) with ASD. Coloured lipids (classes, species) are 

nominally significant; named lipids are significant after multiple testing correction. 

Outlier samples: We investigated the n=7 participants identified as outliers on the basis of quality 

control criteria (see Section 2.6). These outliers did not appear to be an artefact of batch 

processing, or haemolysis, but interestingly, three overlapped with a set of n=12 samples recorded 

at sample processing as being visually “fatty”, and two of these three were siblings, suggesting a 
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shared effect (whether it be genetic or environmental). A fourth outlier sample belonged to a 

participant with a CNV deletion encompassing the LDLR gene (encoding the LDL receptor), which 

is an important gene involved in cholesterol regulation. Rare genetic variation in LDLR causing 

reduction or loss in function is associated with familial hypercholesterolaemia, and there is also a 

common genetic signal, as captured using GWAS. Others have also found that a five-exon cluster 

of the LDLR gene carries autism-segregating variation65. 

 

Figure 3.5.0.4: Association of lipid classes (left) and species (right) with IQ-DQ. Coloured lipids (classes, species) 

are nominally significant; named lipids are significant after multiple testing correction. 
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Notably, the participant with the LDLR deletion had the highest plasma concentrations of the 

following lipid classes: dihydroceramides (dhCer), dihexosylceramides (Hex2Cer), sulfatide 

(SHexCer), cholesteryl ester (CE), dehydrocholesterol ester (DE), and among the top-five highest 

plasma concentrations for free cholesterol (COH), ceramide (Cer(d)), GM3 ganglioside (GM3), 

sphingomyelin (SM), PC, LPC, PE(O), PI, and particularly high plasma concentrations of 

cholesterol esters, cholesterol and sphingomyelin. Overall, this suggests that a potential biological 

explanation could be identified for four of seven outlier samples.  

Figure 3.5.0.5: Association of lipid classes (left) and species (right) with sleep problems. Coloured lipids (classes, 

species) are nominally significant; named lipids are significant after multiple testing correction. 
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Considering the 12 visually “fatty” plasma samples, it was notable that seven had among the ten-

highest concentrations of diacylglycerols, and five were among the ten-highest for triacylglycerols 

(TG [NL] / TG [SIM]) and akyldiacylglycerols (TG(O) [NL] / TG(O) [SIM]), suggesting that these lipid 

classes may be related to “fatty” plasma appearance. Another potential explanation for outlier 

samples may include participants having a fatty meal prior to blood sample collection, as fasting 

status was not recorded. Unfortunately, dietary data was only available for n=2 of the adverse 

event samples. 

 

Figure 3.5.0.6: Association of lipid classes (left) and species (right) with age. Coloured lipids (classes, species) are 

nominally significant; named lipids are significant after multiple testing correction. 
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Heterogeneity analyses: On the basis that some outlier samples have biologically meaningful 

explanations, we investigated if variance in lipid concentrations differed between autistic and non-

autistic groups, in addition to ID vs non-ID groups, using Levene’s test. For these analyses, we 

included the 7 outlier samples identified by the Baker Institute, but excluded the 64 storage time 

outliers. We identified a single lipid class (phosphatidic acid, PA) – but no lipid species – with 

significantly greater variance in autistic children compared to siblings and unrelated, undiagnosed 

children, after Bonferroni correction (Figure 3.5.9). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5.0.7: Association of lipid classes (left) and species (right) with Tanner developmental stage. Coloured 

lipids (classes, species) are nominally significant; named lipids are significant after multiple testing correction. 
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3.5.1 Conclusions 

Our analyses revealed large effects of age and developmental stage (Tanner) on the lipidome, and 

more modest associations with neurodevelopmental and behavioural traits including diagnosis of 

autism, IQ_DQ and sleep disturbances, although only IQ_DQ, and to a lesser extent sleep showed 

robust associations in both the variance components and LWAS analyses after adjusting for 

covariates. The associations with autism, IQ_DQ and sleep all implicate the plasmalogen pathway, 

although sensitivity analyses in children for whom dietary data was available suggested that diet 

may influence this association. Further analyses will be needed to tease apart the relationship 

between diet, autism diagnosis, ID diagnosis, sleep and lipids. Another notable association was for 

increased phosphatidic acid (PA) variance in autism and ID, given that PA is essential for stability 

of the mTOR signalling pathway, which is known to harbour a number of well characterised genes 

for neurodevelopmental disorders66. A limitation of our study is that we did not have access to 

fasting bloods, and consequently it is possible that some of the variance in lipid concentrations 

may be explained by proximity (and type) of meal preceding blood sample collection. We are also 

unable to attempt replication of our findings, since independent lipidomics data in autism does not 

yet exist.  

  

Figure 3.5.1.1: Distribution of total cholesterol and total triglycerides in ASD versus non-ASD (left panels) and 
ID-DQ vs non-ID-DQ (right panels). Individuals with a diagnosis are designated by “1”. Filled dots indicate outliers. 
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Figure 3.5.1.2: Distribution of total PA in ASD compared to siblings (SIB) and undiagnosed, unrelated (UNR) 
(left) and in ID (“1”) compared to non-ID (“0”) (right). Filled dots indicate outliers. 

3.6 Systems genomics-based prediction 

We evaluated the predictive potential of genetic (PGS), DNA methylation (MGS) and combined 

genetic and DNA methylation (PGS and MGS) predictors in the AAB using logistic regression. 

Using data on a total of n=448 AAB participants for whom both PGS and MGS were available, we 

calculated the difference in Nagelkerke’s pseudo-R2 between a baseline model, in which Autism 

diagnosis (encoded as a 0/1 binary variable, with diagnosed children encoded as a 1, and their 

siblings and unrelated undiagnosed children encoded as 0) was regressed against age and sex, 

and models in which PGS, MGS and both PGS and MGS were included as additional independent 

variables.  

The Nagelkerke’s pseudo-R2 for the baseline model was 8.4% (p=5.5e-7), reflecting strong 

associations of age and sex with autism diagnosis in the AAB cohort (i.e. due to ascertainment), 

which is consistent with epidemiological observations that Autism diagnosis is more common 
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among males than females. The addition of PGS to the baseline model increased Nagelkerke’s 

pseudo-R2 to 8.6% (p=1.5e-6), a gain of 0.2% (p=0.33), and adding MGS to the baseline model 

returned a Nagelkerke’s pseudo-R2 of 8.7% (p=1.3e-6), a gain of 0.3% (p=0.26). In comparison, 

adding both PGS and MGS to the baseline model increased Nagelkerke’s pseudo-R2 to 9.1% 

(p=2.7e-6), a gain of 0.7% (p=0.30). Reassuringly, the effect sizes were in the expected directions, 

with both PGS and MGS being associated with increased likelihood of Autism diagnosis. Overall, 

these results suggest that integrating genetic and methylation data is likely to improve prediction, 

although current predictors are weak, and reflects the fact that the available reference datasets 

remain under-powered. 

3.6.1 Caveats and limitations 

We note that there are a number of significant limitations in our analysis, and we strongly caution 

against the use of these results beyond this proof-of-principle demonstration. 

1. We acknowledge that the predictive accuracy is weak, which is likely attributable to lack of 

power in the (external) discovery genotyping and methylation datasets, which is in part due 

to the complexity and heterogeneity of autism. Indeed, this low accuracy was anticipated 

from our first discussions with the Autism CRC. 

2. We are unable to penetrate this heterogeneity as we lacked clinical datasets that were 

available across all groups (diagnosed, siblings, and undiagnosed unrelated children). 

3. This is a very small dataset, meaning that the results are not widely generalisable. 

4. We note that our dataset was ascertained for participants for whom a diagnosis already 

existed. This contrasts with the design of the MINERvA methylation dataset, for which 

infant blood spots were retrieved after having identified people with a subsequent diagnosis 

in the Danish health registry. A strength of MINERvA is that the DNA methylation 

differences are identified prior to diagnosis; however, we do not know enough about 

temporal DNA methylation trajectories to know if we would expect them to be present in the 

age-group of our AAB samples. 
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4. Limitations 

This study had a number of significant limitations. First, the sample size of the Biobank is 

insufficient for statistically powered analyses of genomic variation, as we noted from the outset of 

the study. Additionally, external datasets required for building genetic and genomic predictors for 

autism, including from independent genome-wide and methylome-wide association studies are few 

(and also underpowered). For some data types, including gut metagenomics and metabolomics, 

independent data in autism cohorts is currently lacking (demonstrating the novelty of the study), 

which limits opportunities for inclusion of metagenomics and metabolomics data in a systems 

genomics predictor for autism that can be evaluated in the Biobank. 

A second limitation is that the cross-sectional study design, comprising once-only collection of data 

and biospecimens following diagnosis is not amenable to assessment of genomic predictors in 

early childhood prior to diagnosis. For this reason, although we find negligible association of autism 

with, for example, the gut microbiome, we cannot rule out the possibility that such data collected in 

infancy may have predictive value. 

Third, integrating systems genomics predictors with a clinical diagnostic instrument based on 

behavioural surveillance is not feasible in the Biobank because data from diagnostic instruments in 

autistic children are largely not available in non-autistic siblings and controls. 

5. Implications for research and practice 

The primary research implication from this project is that, as anticipated, much larger genomic 

datasets will be needed to fully evaluate genomics predictors in autism. Achieving this goal will 

require coordinated international collaboration to achieve data harmonisation and the necessary 

sample sizes. 

A number of potentially important clinical implications emerge from our analysis of gut microbiome 

data in the Biobank, which supports a “top-down” model of causality, whereby restricted diet in 

autism influences the gut microbiome and stool consistency, contrary to evidence from animal 

models suggesting a causal effect (i.e. “bottom-up”) of the microbiome on autism-related 

behaviours. First, our findings indicate that microbiome-based interventions in autism (e.g. faecal 

microbiota transplantation) may have no beneficial effect, but may carry risks. Second, 

management of an adequate diet in autism should be a priority, given the known relationship 

between reduced microbiome diversity and poorer health outcomes. 
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6. Recommendations 

The project team’s key recommendations from this study relate to the need for data sharing. We 

strongly recommend that Biobank biospecimens, genetic data and phenotype data be contributed 

to international autism genetics consortia, including the Psychiatric Genomics Consortium and 

Autism Sequencing Consortium. These Consortia have the largest sample sizes globally, and thus 

participation in these studies represents the best opportunity for Biobank participants to contribute 

to new understanding of autism through genetic discoveries.  

In the same vein, we strongly support efforts to establish international consortia for analysis of 

DNA methylation, gut metagenomics and metabolomics data in autism, given the need for sample 

sizes that are beyond the scope of any single research group or study cohort. We strongly 

encourage open-access data sharing to increase the rate of progress in the field. 

A second recommendation is to actively explore options for prospective recruitment and collection 

of biospecimens and clinical and lifestyle data from children before and after diagnosis.  
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Appendix A 

Metabolite 
Class 

N Metabolite species 

Acylcarnitines 
(AC) 

27 AC(10:0), AC(12:0), AC(12:1), AC(13:0), AC(14:0), AC(14:1), AC(14:2), 
AC(15:0)(a), AC(15:0)(b), AC(16:0), AC(16:1), AC(17:0), AC(18:0), AC(18:1), 
AC(18:2), AC(18:3), AC(20:3)(a), AC(20:3)(b), AC(20:4), AC(20:5), AC(22:5), 
AC(22:6), AC(24:0), AC(24:1)(a), AC(24:1)(b), AC(26:0), AC(26:1) 

AC-OH 10 AC(14:0)-OH, AC(14:1)-OH, AC(16:0)-OH, AC(16:1)-OH, AC(18:0)-OH, 
AC(18:1)-OH, AC(20:3)-OH, AC(22:5)-OH, AC(24:0)-OH, AC(24:1)-OH 

Bile Acids (BA) 2 CA, dxCA 

C1P 1 Cer1P(d18:1/16:0) 

CE 27 CE(14:0), CE(15:0), CE(16:0), CE(16:1), CE(16:2), CE(17:0), CE(17:1), CE(18:0), 
CE(18:1), CE(18:2), CE(18:3), CE(20:0), CE(20:1), CE(20:2), CE(20:3), CE(20:4), 
CE(20:5), CE(22:0), CE(22:1), CE(22:4), CE(22:5), CE(22:6), CE(24:0), CE(24:1), 
CE(24:4), CE(24:5), CE(24:6) 

Cer(d) 48 Cer(d16:1/16:0), Cer(d16:1/18:0), Cer(d16:1/20:0), Cer(d16:1/22:0), 
Cer(d16:1/23:0), Cer(d16:1/24:0), Cer(d16:1/24:1), Cer(d17:1/16:0), 
Cer(d17:1/18:0), Cer(d17:1/20:0), Cer(d17:1/22:0), Cer(d17:1/23:0), 
Cer(d17:1/24:0), Cer(d17:1/24:1), Cer(d18:1/14:0), Cer(d18:1/16:0), 
Cer(d18:1/18:0), Cer(d18:1/19:0), Cer(d18:1/20:0), Cer(d18:1/21:0),  
Cer(d18:1/22:0), Cer(d18:1/23:0), Cer(d18:1/24:0), Cer(d18:1/24:1), 
Cer(d18:1/26:0), Cer(d18:2/14:0), Cer(d18:2/16:0), Cer(d18:2/18:0), 
Cer(d18:2/20:0), Cer(d18:2/21:0), Cer(d18:2/22:0), Cer(d18:2/23:0), 
Cer(d18:2/24:0), Cer(d18:2/24:1), Cer(d18:2/26:0), Cer(d19:1/16:0), 
Cer(d19:1/18:0), Cer(d19:1/20:0), Cer(d19:1/22:0), Cer(d19:1/23:0), 
Cer(d19:1/24:0), Cer(d19:1/24:1), Cer(d19:1/26:0), Cer(d20:1/22:0), 
Cer(d20:1/23:0), Cer(d20:1/24:0), Cer(d20:1/24:1), Cer(d20:1/26:0) 

Cer(m) 11 Cer(m18:0/20:0), Cer(m18:0/22:0), Cer(m18:0/23:0), Cer(m18:0/24:0), 
Cer(m18:0/24:1), Cer(m18:1/18:0), Cer(m18:1/20:0), Cer(m18:1/22:0), 
Cer(m18:1/23:0), Cer(m18:1/24:0), Cer(m18:1/24:1) 

COH 1 COH 

DE 6 DE(16:0), DE(18:1), DE(18:2), DE(20:4), DE(20:5), DE(22:6) 

deDE 2 deDE(18:2), deDE(20:4) 

DG 25 DG(14:0_16:0), DG(14:0_18:2), DG(16:0_16:0), DG(16:0_16:1), DG(16:0_18:1), 
DG(16:0_18:2), DG(16:0_20:4), DG(16:0_22:5), DG(16:0_22:6), DG(16:1_18:1), 
DG(18:0_18:1), DG(18:0_18:2), DG(18:0_20:4), DG(18:0_22:6), DG(18:1_18:1), 
DG(18:1_18:2), DG(18:1_18:3), DG(18:1_20:3), DG(18:1_20:4), DG(18:1_20:5), 
DG(18:1_22:5), DG(18:1_22:6), DG(18:2_18:2), DG(18:2_20:4), DG(18:2_22:6) 

dhCer 6 dhCer(d18:0/16:0), dhCer(d18:0/18:0), dhCer(d18:0/20:0), dhCer(d18:0/22:0), 
dhCer(d18:0/24:0), dhCer(d18:0/24:1) 

Dimethyl-CE 4 dimethyl-CE(18:1), dimethyl-CE(18:2), dimethyl-CE(20:4), dimethyl-CE(22:6) 

FFA 16 FA(14:0), FA(15:0), FA(16:0), FA(16:1), FA(17:1), FA(18:0), FA(18:1), FA(18:2), 
FA(18:3), FA(20:2), FA(20:3), FA(20:4), FA(20:5), FA(22:4), FA(22:5), FA(22:6) 

GM1 1 GM1(d18:1/16:0) 

GM3 7 GM3(d18:1/16:0), GM3(d18:1/18:0), GM3(d18:1/20:0), GM3(d18:1/22:0), 
GM3(d18:1/24:0), GM3(d18:1/24:1), GM3(d18:2/24:1) 
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Hex2Cer 10 Hex2Cer(d16:1/16:0), Hex2Cer(d16:1/24:1), Hex2Cer(d18:1/16:0), 
Hex2Cer(d18:1/18:0), Hex2Cer(d18:1/20:0), Hex2Cer(d18:1/22:0), 
Hex2Cer(d18:1/24:0), Hex2Cer(d18:1/24:1), Hex2Cer(d18:2/16:0), 
Hex2Cer(d18:2/18:0), Hex2Cer(d18:2/24:1) 

Hex3Cer 6 Hex3Cer(d18:1/16:0), Hex3Cer(d18:1/18:0), Hex3Cer(d18:1/20:0), 
Hex3Cer(d18:1/22:0), Hex3Cer(d18:1/24:0), Hex3Cer(d18:1/24:1) 

HexCer 14 HexCer(d16:1/18:0), HexCer(d16:1/20:0), HexCer(d16:1/22:0), 
HexCer(d16:1/24:0), HexCer(d18:1/16:0), HexCer(d18:1/18:0), 
HexCer(d18:1/20:0), HexCer(d18:1/22:0), HexCer(d18:1/24:0), 
HexCer(d18:1/24:1), HexCer(d18:2/18:0), HexCer(d18:2/20:0), 
HexCer(d18:2/22:0), HexCer(d18:2/24:0) 

LPC 61 LPC(14:0) [sn1], LPC(14:0) [sn2], LPC(15-MHDA) [sn1] / LPC(17:0) [sn2], 
LPC(15-MHDA) [sn1] [104_sn1], LPC(15-MHDA) [sn2], LPC(15:0) [sn1], 
LPC(15:0) [sn2], LPC(16:0) [sn1], LPC(16:0) [sn2], LPC(16:1) [sn1], LPC(16:1) 
[sn2], LPC(17:0) [sn1], LPC(17:1) (a) [sn1] [104_sn1], LPC(17:1) [sn1] (a) / 
LPC(17:1) [sn2] (b), LPC(17:1) [sn1] (b), LPC(17:1) [sn2] (a), LPC(18:0) [sn1], 
LPC(18:0) [sn2], LPC(18:1) [sn1], LPC(18:1) [sn2], LPC(18:2) [sn1], LPC(18:2) 
[sn2], LPC(18:3) (a) [sn1] [104_sn1], LPC(18:3) [sn1] (a)/LPC(18:3) [sn2] (b), 
LPC(18:3) [sn1] (b), LPC(18:3) [sn2] (a), LPC(19:0) (a) [sn1] [104_sn1], 
LPC(19:0) [sn1] (a) / LPC(19:0) [sn2] (b), LPC(19:0) [sn1] (b), LPC(19:0) [sn2] (a), 
LPC(19:1) (a), LPC(19:1) (b), LPC(19:1) (c), LPC(20:0) [sn1], LPC(20:0) [sn2], 
LPC(20:1) [sn1], LPC(20:1) [sn2], LPC(20:2) [sn1], LPC(20:2) [sn2], LPC(20:3) 
[sn1], LPC(20:3) [sn2], LPC(20:4) [sn1], LPC(20:4) [sn2], LPC(20:5) [sn1], 
LPC(20:5) [sn2], LPC(22:0) [sn1], LPC(22:0) [sn2], LPC(22:1) [sn1], LPC(22:1) 
[sn2], LPC(22:4) [sn1], LPC(22:4) [sn2], LPC(22:5) (n3) [sn1] [104_sn1], 
LPC(22:5) [sn1] (n3)/LPC(22:5) [sn2] (n6), LPC(22:5) [sn1] (n6), LPC(22:5) [sn2] 
(n3), LPC(22:6) [sn1], LPC(22:6) [sn2], LPC(24:0) [sn1], LPC(24:0) [sn2], 
LPC(26:0) [sn1], LPC(26:0) [sn2] 

LPC(O) 10 LPC(O-16:0), LPC(O-18:0), LPC(O-18:1), LPC(O-20:0), LPC(O-20:1), LPC(O-
22:0), LPC(O-22:1), LPC(O-24:0), LPC(O-24:1), LPC(O-24:2) 

LPC(P) 6 LPC(P-16:0), LPC(P-17:0)(a), LPC(P-17:0)(b), LPC(P-18:0), LPC(P-18:1), 
LPC(P-20:0) 

LPE 12 LPE(16:0) [sn1], LPE(16:0) [sn2], LPE(18:0) [sn1], LPE(18:0) [sn2], LPE(18:1) 
[sn1], LPE(18:1) [sn2], LPE(18:2) [sn1], LPE(18:2) [sn2], LPE(20:4) [sn1], 
LPE(20:4) [sn2], LPE(22:6) [sn1], LPE(22:6) [sn2] 

LPE(P) 4 LPE(P-16:0), LPE(P-18:0), LPE(P-18:1), LPE(P-20:0) 

LPI 7 LPI(18:0), LPI(18:1) [sn1], LPI(18:1) [sn2], LPI(18:2) [sn1], LPI(18:2) [sn2], 
LPI(20:4) [sn1], LPI(20:4) [sn2] 

Methyl-CE 5 methyl-CE(18:0), methyl-CE(18:1), methyl-CE(18:2), methyl-CE(20:4), methyl-
CE(22:6) 

Methyl-DE 2 methyl-DE(18:1), methyl-DE(18:2) 

OxSpecies 9 CE(18:2) [+OH], CE(20:4) [+OH], CE(22:6) [+OH], LPC(18:2) [+OH], LPC(20:4) 
[+OH], LPC(22:6) [+OH], PC(34:2) [+OH], PC(36:4) [+OH], PC(38:6) [+OH] 

PA 6 PA(34:1), PA(36:1), PA(36:2), PA(36:3), PA(36:4), PA(40:6) 
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PC 83 PC(14:0_16:0), PC(14:0_20:4), PC(14:0_22:6), PC(15-MHDA_18:1), PC(15-
MHDA_18:2), PC(15-MHDA_20:4), PC(15-MHDA_22:6), PC(15:0_20:3), 
PC(15:0_20:4), PC(15:0_22:6), PC(16:0_16:0), PC(16:0_18:0), PC(16:0_18:1), 
PC(16:0_18:2), PC(16:0_18:3) (a), PC(16:0_18:3) (b), PC(16:0_20:3) (a), 
PC(16:0_20:3) (b), PC(16:0_20:4), PC(16:0_20:5), PC(16:0_22:6), 
PC(16:1_18:2), PC(16:1_20:4), PC(16:1_22:6), PC(17:0_18:1), PC(17:0_18:2), 
PC(17:0_20:4), PC(17:0_22:6), PC(17:1_18:2), PC(18:0_18:1), PC(18:0_18:2), 
PC(18:0_20:3), PC(18:0_20:4), PC(18:0_22:4), PC(18:0_22:5) 
(n3)/PC(20:1_20:4), PC(18:0_22:5) (n6), PC(18:0_22:6), PC(18:1_18:1), 
PC(18:1_18:2), PC(18:1_20:3), PC(18:1_22:6) (a), PC(18:1_22:6) (b), 
PC(18:2_18:2), PC(18:2_20:5), PC(20:0_20:4), PC(28:0), PC(31:0) (a), PC(31:0) 
(b), PC(31:1), PC(32:1), PC(32:2), PC(33:0) (a), PC(33:0) (b), PC(33:1), 
PC(33:2), PC(34:5), PC(35:5), PC(36:6) (a), PC(38:2), PC(38:4) (b), PC(38:5) (a), 
PC(38:5) (b), PC(38:6) (a), PC(38:7) (c), PC(39:5) (a), PC(39:5) (b), PC(40:7) (a), 
PC(40:8), PC(42:10), PC(42:2), PC(42:3), PC(42:4), PC(42:5) (a), PC(42:5) (b), 
PC(42:6) (a), PC(42:6) (b), PC(42:7), PC(42:8), PC(42:9), PC(44:12), PC(44:4) 
(a), PC(44:4) (b), PC(44:5) 

PC(O) 33 PC(O-16:0/16:0), PC(O-16:0/20:3), PC(O-16:0/20:4), PC(O-16:0/22:6), PC(O-
18:0/18:1), PC(O-18:0/18:2), PC(O-18:0/20:4), PC(O-18:0/22:6), PC(O-
18:1/18:1), PC(O-18:1/18:2), PC(O-32:1), PC(O-32:2), PC(O-34:1), PC(O-34:2), 
PC(O-34:4), PC(O-35:4), PC(O-36:0), PC(O-36:5), PC(O-38:5), PC(O-40:5), 
PC(O-40:7), PC(O-42:4) (a), PC(O-42:4) (b), PC(O-42:5) (a), PC(O-42:5) (b), 
PC(O-42:6), PC(O-42:7), PC(O-42:8), PC(O-44:6), PC(O-44:7), PC(O-46:7) (a), 
PC(O-46:7) (b), PC(O-46:8) 

PC(P) 29 PC(P-15:0/20:4) (a), PC(P-15:0/20:4) (b), PC(P-16:0/14:0), PC(P-16:0/16:0), 
PC(P-16:0/16:1), PC(P-16:0/18:0), PC(P-16:0/18:1), PC(P-16:0/18:2), PC(P-
16:0/18:3), PC(P-16:0/20:4), PC(P-16:0/20:5), PC(P-16:0/22:6), PC(P-17:0/20:4) 
(a), PC(P-17:0/20:4) (b), PC(P-18:0/18:2), PC(P-18:0/20:4), PC(P-18:0/22:5), 
PC(P-18:0/22:6), PC(P-18:1/18:1), PC(P-18:1/22:6), PC(P-20:0/20:4), PC(P-35:2) 
(a), PC(P-35:2) (b), PC(P-36:3), PC(P-38:5) (a), PC(P-38:5) (b), PC(P-42:5), 
PC(P-44:5), PC(P-46:8) 

PE 37 PE(15-MHDA_18:1), PE(15-MHDA_18:2), PE(15-MHDA_20:4), PE(15-
MHDA_22:6), PE(16:0_16:0), PE(16:0_16:1), PE(16:0_18:1), PE(16:0_18:2), 
PE(16:0_18:3) (a), PE(16:0_18:3) (b), PE(16:0_20:3), PE(16:0_20:4), 
PE(16:0_20:5), PE(16:0_22:6), PE(16:1_18:2), PE(16:1_20:4), PE(17:0_18:1), 
PE(17:0_18:2), PE(17:0_20:4), PE(17:0_22:6), PE(18:0_18:1), PE(18:0_18:2), 
PE(18:0_20:3) (a), PE(18:0_20:3) (b), PE(18:0_20:4), PE(18:0_22:4), 
PE(18:0_22:5) (n3), PE(18:0_22:5) (n6), PE(18:0_22:6), PE(18:1_18:1), 
PE(18:1_18:2), PE(18:1_22:6) (a), PE(18:1_22:6) (b), PE(20:0_20:4), PE(36:0), 
PE(38:5)(a), PE(38:5) b) 

PE(O) 14 PE(O-16:0/18:2), PE(O-16:0/20:3), PE(O-16:0/20:4), PE(O-16:0/22:4), PE(O-
16:0/22:6), PE(O-18:0/20:4), PE(O-18:0/22:5), PE(O-18:0/22:6), PE(O-18:1/18:2), 
PE(O-18:1/22:6), PE(O-34:1), PE(O-36:5), PE(O-38:5) (a), PE(O-38:5) (b) 
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PE(P) 54 PE(P-15:0/20:4) (a), PE(P-15:0/20:4) (b), PE(P-15:0/22:6) (a), PE(P-15:0/22:6) 
(b), PE(P-16:0/18:1), PE(P-16:0/18:2), PE(P-16:0/18:3), PE(P-16:0/20:3) (a), 
PE(P-16:0/20:3) (b), PE(P-16:0/20:4), PE(P-16:0/20:5), PE(P-16:0/22:4), PE(P-
16:0/22:5) (n3), PE(P-16:0/22:5) (n6), PE(P-16:0/22:6), PE(P-17:0/20:4) (a), 
PE(P-17:0/20:4) (b), PE(P-17:0/22:6) (a), PE(P-17:0/22:6) (b), PE(P-18:0/18:1), 
PE(P-18:0/18:2), PE(P-18:0/18:3), PE(P-18:0/20:3) (a), PE(P-18:0/20:3) (b), 
PE(P-18:0/20:4), PE(P-18:0/20:5), PE(P-18:0/22:4), PE(P-18:0/22:5) (n3), PE(P-
18:0/22:5) (n6), PE(P-18:0/22:6), PE(P-18:1/18:1) (a), PE(P-18:1/18:1) (b), PE(P-
18:1/18:2) (a), PE(P-18:1/18:2) (b), PE(P-18:1/18:3), PE(P-18:1/20:3) (a), PE(P-
18:1/20:3) (b), PE(P-18:1/20:4) (a), PE(P-18:1/20:4) (b), PE(P-18:1/20:5) (a), 
PE(P-18:1/20:5) (b), PE(P-18:1/22:4), PE(P-18:1/22:5) (a), PE(P-18:1/22:5) (b), 
PE(P-18:1/22:6) (a), PE(P-18:1/22:6) (b), PE(P-19:0/20:4) (a), PE(P-19:0/20:4) 
(b), PE(P-20:0/18:1), PE(P-20:0/18:2), PE(P-20:0/20:4), PE(P-20:0/22:6), PE(P-
20:1/20:4), PE(P-20:1/22:6) 

PG 3 PG(34:1), PG(36:1), PG(36:2) 

PI 27 PI (38:5) (b), PI(15-MHDA_18:1)/PI(17:0_18:1), PI(15-
MHDA_18:2)/PI(17:0_18:2), PI(15-MHDA_20:4)\PI(17:0_20:4), PI(16:0/16:0), 
PI(16:0_16:1), PI(16:0_20:3) (a), PI(16:0_20:3) (b), PI(16:0_20:4), PI(18:0_18:1), 
PI(18:0_20:2), PI(18:0_20:3) (a), PI(18:0_20:3) (b), PI(18:0_20:4), PI(18:0_22:4), 
PI(18:0_22:5) (n3), PI(18:0_22:5) (n6), PI(18:0_22:6), PI(18:1_18:2), 
PI(20:0_20:4), PI(34:0), PI(34:1), PI(36:2), PI(37:6), PI(38:5) (a), PI(38:6), 
PI(39:6) 

PIP1 1 PIP1(38:4) 

PS 7 PS(36:1), PS(36:2), PS(38:3), PS(38:4), PS(38:5), PS(40:5), PS(40:6) 

S1P 4 S1P(d16:1), S1P(d18:0), S1P(d18:1), S1P(d18:2) 

SHexCer 6 SHexCer(d18:1/16:0(OH)), SHexCer(d18:1/16:0), SHexCer(d18:1/24:0(OH)), 
SHexCer(d18:1/24:0), SHexCer(d18:1/24:1(OH)), SHexCer(d18:1/24:1) 

SM 47 SM(34:3), SM(35:2) (b), SM(37:1), SM(37:2), SM(38:3) (a), SM(38:3) (b), 
SM(40:3) (a), SM(40:3) (b), SM(40:4), SM(41:0), SM(41:1) (a), SM(42:3), 
SM(42:4), SM(43:1), SM(43:2) (b), SM(43:2) (c), SM(44:1), SM(44:2), SM(44:3), 
SM(d16:1/19:0), SM(d16:1/23:0)/SM(d17:1/22:0), SM(d16:1/24:1), 
SM(d17:1/14:0), SM(d17:1/16:0), SM(d17:1/24:1), SM(d18:0/14:0), 
SM(d18:0/16:0), SM(d18:0/22:0), SM(d18:1/14:0)/SM(d16:1/16:0), 
SM(d18:1/16:0), SM(d18:1/17:0)/SM(d17:1/18:0), 
SM(d18:1/18:0)/SM(d16:1/20:0), SM(d18:1/20:0)/SM(d16:1/22:0), 
SM(d18:1/22:0)/SM(d16:1/24:0), SM(d18:1/23:0)/SM(d17:1/24:0), 
SM(d18:1/24:0), SM(d18:1/24:1), SM(d18:2/14:0), SM(d18:2/16:0), 
SM(d18:2/17:0), SM(d18:2/18:0), SM(d18:2/18:1), SM(d18:2/20:0), 
SM(d18:2/22:0), SM(d18:2/23:0), SM(d18:2/24:0), SM(d19:1/24:1) 

Sph 1 Sph(d18:1) 
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TG [NL] 77 TG(48:0) [NL-16:0], TG(48:0) [NL-18:0], TG(48:1) [NL-16:1], TG(48:1) [NL-18:1], 
TG(48:2) [NL-14:0], TG(48:2) [NL-14:1], TG(48:2) [NL-16:1], TG(48:2) [NL-18:2], 
TG(48:3) [NL-14:0], TG(48:3) [NL-16:1], TG(48:3) [NL-18:3], TG(49:1) [NL-16:1], 
TG(49:1) [NL-17:1], TG(50:0) [NL-18:0], TG(50:1) [NL-14:0], TG(50:1) [NL-16:0], 
TG(50:1) [NL-18:1], TG(50:2) [NL-14:0], TG(50:2) [NL-16:1], TG(50:2) [NL-18:1], 
TG(50:2) [NL-18:2], TG(50:3) [NL-14:0], TG(50:3) [NL-14:1], TG(50:3) [NL-16:1], 
TG(50:3) [NL-18:2], TG(50:3) [NL-18:3], TG(50:4) [NL-14:0], TG(50:4) [NL-18:3], 
TG(50:4) [NL-20:4], TG(51:0) [NL-16:0], TG(51:1) [NL-17:0], TG(51:2) [NL-15:0], 
TG(51:2) [NL-17:0], TG(51:2) [NL-17:1], TG(52:1) [NL-18:0], TG(52:1) [NL-18:1], 
TG(52:2) [NL-16:0], TG(52:2) [NL-18:2], TG(52:3) [NL-16:1], TG(52:3) [NL-18:2], 
TG(52:4) [NL-16:1], TG(52:4) [NL-18:2], TG(52:4) [NL-18:3], TG(52:5) [NL-18:3], 
TG(52:5) [NL-20:4], TG(52:5) [NL-20:5], TG(53:2) [NL-17:1], TG(53:2) [NL-18:1], 
TG(54:0) [NL-18:0], TG(54:1) [NL-18:1], TG(54:2) [NL-18:0], TG(54:2) [NL-20:1], 
TG(54:3) [NL-18:1], TG(54:3) [NL-18:2], TG(54:4) [NL-18:2], TG(54:4) [NL-20:3], 
TG(54:5) [NL-18:3], TG(54:5) [NL-20:4], TG(54:6) [NL-18:3], TG(54:6) [NL-20:4], 
TG(54:6) [NL-20:5], TG(54:6) [NL-22:6], TG(54:7) [NL-20:5], TG(54:7) [NL-22:6], 
TG(56:6) [NL-20:4], TG(56:6) [NL-22:5], TG(56:7) [NL-20:4], TG(56:7) [NL-20:5], 
TG(56:7) [NL-22:5], TG(56:7) [NL-22:6], TG(56:8) [NL-20:4], TG(56:8) [NL-20:5], 
TG(56:8) [NL-22:6], TG(56:9) [NL-22:6], TG(58:10) [NL-22:6], TG(58:8) [NL-22:6], 
TG(58:9) [NL-22:6] 

TG(O) [NL] 20 TG(O-50:1) [NL-15:0], TG(O-50:1) [NL-16:0], TG(O-50:1) [NL-17:1], TG(O-50:1) 
[NL-18:1], TG(O-50:2) [NL-16:1], TG(O-50:2) [NL-18:1], TG(O-50:2) [NL-18:2], 
TG(O-50:3) [NL-18:2], TG(O-52:0) [NL-16:0], TG(O-52:1) [NL-16:0], TG(O-52:1) 
[NL-18:1], TG(O-52:2) [NL-16:0], TG(O-52:2) [NL-17:1], TG(O-52:2) [NL-18:1], 
TG(O-54:2) [NL-17:1], TG(O-54:2) [NL-18:1], TG(O-54:3) [NL-17:1], TG(O-54:3) 
[NL-18:1], TG(O-54:4) [NL-17:1], TG(O-54:4) [NL-18:2] 

TG(SIM) 34 TG(48:0) [SIM], TG(48:1) [SIM], TG(48:2) [SIM], TG(48:3) [SIM], TG(49:1) [SIM], 
TG(50:0) [SIM], TG(50:1) [SIM], TG(50:2) [SIM], TG(50:3) [SIM], TG(50:4) [SIM], 
TG(51:0) [SIM], TG(51:1) [SIM], TG(51:2) [SIM], TG(52:1) [SIM], TG(52:2) [SIM], 
TG(52:3) [SIM], TG(52:4) [SIM], TG(52:5) [SIM], TG(53:2) [SIM], TG(54:0) [SIM], 
TG(54:1) [SIM], TG(54:2) [SIM], TG(54:3) [SIM], TG(54:4) [SIM], TG(54:5) [SIM], 
TG(54:6) [SIM], TG(54:7) [SIM], TG(56:6) [SIM], TG(56:7) [SIM], TG(56:8) [SIM], 
TG(56:9) [SIM], TG(58:10) [SIM], TG(58:8) [SIM], TG(58:9) [SIM] 

Ubiquinone 1 Ubiquinone 
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Appendix B 

Summary statistics from linear model analyses of lipid classes and species that remained 

Bonferroni significant after backwards stepwise regression. “Pheno”: phenotype (dependent 

variable) in the association test; “Data”: dataset – either lipid classes (“lipids_class”) or lipid species 

(“lipids”); “Lipid name”: name of the lipid; “Effect”: effect size for the association (OR for ASD, beta 

for all other traits); “SE”: standard error; “P”: p-value for association; “N”: number of participants 

included in that analysis. 

Phenotype Data Lipid.name Effect SE P N 

ASD lipids_class Total PC(O) 0.73 0.09 7.10E-04 694 

IQ_DQ lipids PC(P-35:2) (b) 3.77 0.87 1.48E-05 642 

IQ_DQ lipids LPC(O-22:0) 4.04 0.88 4.38E-06 642 

sleep_problems lipids_class Total PE(O) -1.38 0.40 6.43E-04 611 

sleep_problems lipids_class Total LPE(P) -1.42 0.40 4.22E-04 611 

sleep_problems lipids PC(15:0_22:6) -1.60 0.40 6.20E-05 611 

sleep_problems lipids PC(P-18:0/22:6) -1.61 0.40 5.51E-05 611 

sleep_problems lipids PE(P-19:0/20:4) (b) -1.95 0.40 8.70E-07 611 

sleep_problems lipids PE(P-20:1/22:6) -1.82 0.41 8.32E-06 611 

sleep_problems lipids dimethyl-CE(22:6) -1.64 0.41 5.40E-05 611 

age lipids_class Total dhCer -1.02 0.14 1.31E-13 758 

age lipids_class Total Cer(m) 1.01 0.14 2.64E-13 758 

age lipids_class Total SHexCer -0.84 0.14 1.14E-09 758 

age lipids_class Total deDE 0.76 0.14 6.50E-08 758 

age lipids_class Total methyl-CE -0.51 0.14 4.04E-04 758 

age lipids_class Total dimethyl-CE -0.72 0.14 2.72E-07 758 

age lipids_class Total BA 0.66 0.14 2.48E-06 758 

age lipids S1P(d18:2) 1.07 0.14 3.50E-14 758 

age lipids dhCer(d18:0/24:0) -1.29 0.13 1.04E-21 758 

age lipids Cer(d17:1/18:0) 0.69 0.14 1.19E-06 758 

age lipids Cer(d17:1/24:1) 0.94 0.14 3.49E-11 758 

age lipids Cer(d18:1/20:0) 0.62 0.15 2.09E-05 758 

age lipids Cer(d18:1/26:0) -0.80 0.14 8.59E-09 758 

age lipids Cer(d18:2/24:0) 1.03 0.14 2.17E-13 758 

age lipids Cer(m18:0/22:0) 0.60 0.14 2.00E-05 758 

age lipids Cer(m18:0/24:1) 0.90 0.14 8.53E-11 758 

age lipids Cer(m18:1/23:0) 0.80 0.14 1.09E-08 758 

age lipids Cer(m18:1/24:1) 1.42 0.13 2.38E-26 758 

age lipids Cer1P(d18:1/16:0) 0.74 0.14 1.31E-07 758 
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age lipids HexCer(d18:1/16:0) -1.13 0.14 1.15E-16 758 

age lipids HexCer(d18:2/24:0) 1.10 0.14 2.92E-15 758 

age lipids Hex2Cer(d18:1/18:0) -1.31 0.14 2.75E-21 758 

age lipids Hex2Cer(d18:2/16:0) 1.37 0.13 1.92E-24 758 

age lipids Hex3Cer(d18:1/18:0) -1.02 0.14 2.66E-13 758 

age lipids Hex3Cer(d18:1/22:0) -0.57 0.14 6.11E-05 758 

age lipids GM3(d18:1/16:0) -1.24 0.14 5.22E-20 758 

age lipids SHexCer(d18:1/16:0) -0.92 0.14 2.73E-11 758 

age lipids SHexCer(d18:1/24:0) -0.92 0.14 3.15E-11 758 

age lipids SHexCer(d18:1/24:1) -1.23 0.14 3.88E-19 758 

age lipids SM(34:3) 0.81 0.14 8.74E-09 758 

age lipids SM(40:3) (a) 0.93 0.14 2.78E-11 758 

age lipids SM(41:0) -1.75 0.13 8.57E-43 758 

age lipids SM(41:1) (a) -0.58 0.14 3.28E-05 758 

age lipids SM(42:4) 1.31 0.14 1.14E-21 758 

age lipids SM(43:1) -1.01 0.14 1.37E-13 758 

age lipids SM(44:1) -1.09 0.14 1.56E-15 758 

age lipids SM(d18:0/14:0) -0.71 0.14 3.79E-07 758 

age lipids SM(d18:0/16:0) -1.24 0.14 1.47E-18 758 

age lipids SM(d18:0/22:0) -1.78 0.13 1.25E-44 758 

age lipids SM(d18:1/23:0)/SM(d17:1/24:0) -1.04 0.14 4.08E-14 758 

age lipids SM(d18:1/24:0) -0.96 0.14 3.13E-12 758 

age lipids SM(d18:2/14:0) 1.30 0.14 2.65E-21 758 

age lipids SM(d18:2/16:0) 1.56 0.14 1.51E-30 758 

age lipids SM(d18:2/18:0) 1.19 0.14 3.55E-17 758 

age lipids SM(d18:2/20:0) 1.24 0.14 6.35E-19 758 

age lipids SM(d18:2/22:0) 0.76 0.14 9.93E-08 758 

age lipids PC(14:0_22:6) 0.60 0.14 2.11E-05 758 

age lipids PC(16:1_18:2) 0.97 0.14 2.94E-12 758 

age lipids PC(16:1_20:4) 0.88 0.14 2.73E-10 758 

age lipids PC(18:0_20:3) 0.85 0.14 1.42E-09 758 

age lipids PC(32:2) 0.65 0.14 3.75E-06 758 

age lipids PC(38:6) (a) 0.75 0.14 1.22E-07 758 

age lipids PC(40:8) 0.84 0.14 1.53E-09 758 

age lipids PC(42:5) (a) -0.58 0.14 3.94E-05 758 

age lipids PC(42:6) (b) -1.12 0.14 1.80E-16 758 

age lipids PC(42:8) 0.90 0.14 1.87E-10 758 

age lipids PC(O-16:0/20:3) 0.64 0.14 1.08E-05 758 

age lipids PC(P-16:0/16:1) 0.86 0.14 9.87E-10 758 

age lipids PC(P-18:0/22:5) -0.75 0.14 1.64E-07 758 
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age lipids PC(P-20:0/20:4) -1.24 0.14 4.87E-20 758 

age lipids LPC(20:4) [sn2] 0.75 0.14 1.05E-07 758 

age lipids LPC(O-24:1) 0.71 0.14 3.93E-07 758 

age lipids PE(18:1_18:1) -0.61 0.14 1.53E-05 758 

age lipids PE(P-15:0/20:4) (a) -0.85 0.14 6.45E-10 758 

age lipids PE(P-16:0/18:1) -0.81 0.14 7.41E-09 758 

age lipids PE(P-18:0/18:1) -0.87 0.14 3.06E-10 758 

age lipids PE(P-18:0/18:2) -0.60 0.14 2.44E-05 758 

age lipids PE(P-18:0/22:5) (n6) -0.73 0.14 2.06E-07 758 

age lipids PE(P-18:1/18:1) (a) -0.82 0.14 4.80E-09 758 

age lipids PE(P-20:0/18:2) -1.67 0.13 2.45E-38 758 

age lipids LPE(22:6) [sn2] 0.96 0.14 3.59E-12 758 

age lipids LPE(P-20:0) -0.65 0.14 3.77E-06 758 

age lipids PI(16:0_20:3) (b) -0.56 0.14 6.27E-05 758 

age lipids PI(38:6) -0.77 0.14 3.00E-08 758 

age lipids CE(20:3) 0.84 0.14 2.57E-09 758 

age lipids deDE(18:2) 0.63 0.14 1.03E-05 758 

age lipids dimethyl-CE(18:2) -0.72 0.14 3.42E-07 758 

age lipids FA(22:6) 0.74 0.14 1.49E-07 758 

age lipids AC(24:0) -1.46 0.13 1.28E-27 758 

age lipids TG(48:2) [NL-16:1] 0.57 0.14 4.62E-05 758 

age lipids TG(48:3) [NL-16:1] 0.58 0.14 4.49E-05 758 

age lipids TG(50:2) [NL-16:1] 0.68 0.14 1.19E-06 758 

age lipids TG(50:3) [NL-16:1] 0.78 0.14 3.09E-08 758 

age lipids TG(52:4) [NL-16:1] 0.68 0.14 1.54E-06 758 

age lipids PC(36:4) [+OH] 1.07 0.14 3.93E-15 758 

age lipids PC(38:6) [+OH] 0.98 0.14 1.38E-11 758 

tanner_genital lipids_class Total SHexCer -0.34 0.08 4.65E-05 224 

tanner_genital lipids_class Total PE(P) -0.30 0.09 3.94E-04 224 

tanner_genital lipids_class Total dimethyl-CE -0.35 0.08 1.96E-05 224 

tanner_genital lipids dhCer(d18:0/24:0) -0.39 0.10 4.08E-05 224 

tanner_genital lipids Hex2Cer(d18:1/18:0) -0.42 0.09 3.35E-06 224 

tanner_genital lipids SM(44:1) -0.41 0.08 3.26E-07 224 

tanner_genital lipids SM(d18:0/16:0) -0.42 0.09 2.55E-06 224 

tanner_genital lipids SM(d18:0/22:0) -0.49 0.08 5.81E-09 224 

tanner_genital lipids SM(d18:1/24:0) -0.43 0.08 2.93E-07 224 

tanner_genital lipids PC(O-18:0/22:6) -0.36 0.08 2.52E-05 224 

tanner_genital lipids PE(P-20:0/18:1) -0.46 0.10 4.22E-06 224 

tanner_genital lipids PE(P-20:0/18:2) -0.52 0.10 5.23E-08 224 

tanner_genital lipids PI(16:0_20:3) (b) -0.34 0.08 4.44E-05 224 
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tanner_genital lipids PI(18:0_22:6) -0.43 0.09 1.18E-06 224 

tanner_genital lipids PI(18:1_18:2) -0.38 0.08 7.91E-06 224 

tanner_genital lipids PI(38:6) -0.44 0.08 6.42E-08 224 

tanner_genital lipids AC(24:0) -0.44 0.09 2.65E-06 224 
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